European Air Quality Simulations in the Context of IMPACT2C, Focus on Aerosol Concentrations View Full Text


Ontology type: schema:Chapter     


Chapter Info

DATE

2016

AUTHORS

G. Lacressonnière , L. Watson , M. Engardt , M. Gauss , C. Andersson , M. Beekmann , A. Colette , G. Foret , B. Josse , V. Marécal , A. Nyiri , G. Siour , S. Sobolowski , R. Vautard

ABSTRACT

In the context of the IMPACT2C project, one of the objectives is to estimate the pan-European impacts of a global 2-degree increase in temperature on human health, including change in air pollution. Climate change will affect atmospheric dispersion, biogenic and fire emissions, chemistry, and the frequency of extreme weather situations such as heat waves. These changes will have an impact on air quality with subsequent health consequences that must be evaluated. In order to evaluate how climate change will potentially affect the efficiency of emission abatement policies and how this will potentially affect health, several simulations have been conducted using different chemistry-transport models (CTMs): CHIMERE (IPSL), EMEP MSC-W (MET.NO), MATCH (SMHI), and MOCAGE (Météo-France). The use of four CTMs provide an estimate of the uncertainty in projections with the spread between models and driving meteorological data. To compare with future climate, the first step is to perform air quality simulations for the current climate: HINDCAST (CTMs forced by reanalysis boundary forcing ERA Interim) and HISTORICAL (global climate model boundary forcings). The comparisons between HINDCAST and HISTORICAL simulations allow to evaluate how global climate models modify climate hindcasts by boundary conditions inputs. In this study, we focus on particulate matter (PM10 and PM2.5) and its chemical composition. We first analyze whether the chemical composition of PM is affected by the use of climate models. We then investigate the contributions of the changes in meteorological parameters (frequency of precipitation, 2-m temperature, etc.) as well as emissions and depositions processes on surface PM. These results are the basis for analyzing future 2° warming climates. Under the RCP4.5 scenario, simulations have been performed in order to calculate the effect of climate change on emission reduction scenarios, the climate penalty, as well as the effect of emission mitigation. This analysis also provide uncertainties associated to future AQ projections. More... »

PAGES

213-217

References to SciGraph publications

Book

TITLE

Air Pollution Modeling and its Application XXIV

ISBN

978-3-319-24476-1
978-3-319-24478-5

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/978-3-319-24478-5_35

DOI

http://dx.doi.org/10.1007/978-3-319-24478-5_35

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1002268389


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0401", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Atmospheric Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/04", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Earth Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "name": [
            "Laboratoire Interuniversitaire des Syst\u00e8mes Atmosph\u00e9riques (LISA), Universit\u00e9 Paris Est et 7, CNRS"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Lacressonni\u00e8re", 
        "givenName": "G.", 
        "id": "sg:person.015320425145.88", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015320425145.88"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "name": [
            "CNRM-GAME, M\u00e9t\u00e9o France/CNRS"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Watson", 
        "givenName": "L.", 
        "id": "sg:person.016521132204.08", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016521132204.08"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "name": [
            "SMHI"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Engardt", 
        "givenName": "M.", 
        "id": "sg:person.015323212356.55", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015323212356.55"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "name": [
            "EMEP MSC-W, Norwegian Meteorological Institute"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Gauss", 
        "givenName": "M.", 
        "id": "sg:person.01176210233.76", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01176210233.76"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "name": [
            "SMHI"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Andersson", 
        "givenName": "C.", 
        "id": "sg:person.01133176454.21", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01133176454.21"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "name": [
            "Laboratoire Interuniversitaire des Syst\u00e8mes Atmosph\u00e9riques (LISA), Universit\u00e9 Paris Est et 7, CNRS"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Beekmann", 
        "givenName": "M.", 
        "id": "sg:person.010045072003.34", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010045072003.34"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "name": [
            "INERIS"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Colette", 
        "givenName": "A.", 
        "id": "sg:person.014564735611.41", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014564735611.41"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "name": [
            "Laboratoire Interuniversitaire des Syst\u00e8mes Atmosph\u00e9riques (LISA), Universit\u00e9 Paris Est et 7, CNRS"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Foret", 
        "givenName": "G.", 
        "id": "sg:person.013770701131.47", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013770701131.47"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "name": [
            "CNRM-GAME, M\u00e9t\u00e9o France/CNRS"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Josse", 
        "givenName": "B.", 
        "id": "sg:person.012541003255.14", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012541003255.14"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "name": [
            "CNRM-GAME, M\u00e9t\u00e9o France/CNRS"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Mar\u00e9cal", 
        "givenName": "V.", 
        "id": "sg:person.013373774767.39", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013373774767.39"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "name": [
            "EMEP MSC-W, Norwegian Meteorological Institute"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Nyiri", 
        "givenName": "A.", 
        "id": "sg:person.010240707666.08", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010240707666.08"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "name": [
            "Laboratoire Interuniversitaire des Syst\u00e8mes Atmosph\u00e9riques (LISA), Universit\u00e9 Paris Est et 7, CNRS"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Siour", 
        "givenName": "G.", 
        "id": "sg:person.014714561747.82", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014714561747.82"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "name": [
            "UNI Research, The Bjerknes Centre for Climate Research"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Sobolowski", 
        "givenName": "S.", 
        "id": "sg:person.07522740611.73", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07522740611.73"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "name": [
            "Laboratoire des Sciences du Climat et de l\u2019Environnement, LSCE, CEA-CNRS-UVSQ"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Vautard", 
        "givenName": "R.", 
        "id": "sg:person.0637243716.97", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0637243716.97"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1111/j.1600-0889.2006.00196.x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1002454823"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1111/j.1600-0889.2004.00112.x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1015442418"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.5194/acp-12-7825-2012", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1018306262"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1034/j.1600-0889.1998.t01-2-00001.x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1042317916"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.atmosenv.2004.02.034", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1046431666"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00382-012-1345-9", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1050867369", 
          "https://doi.org/10.1007/s00382-012-1345-9"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1175/1520-0450(1999)038<0190:aelaat>2.0.co;2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1051246848"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2016", 
    "datePublishedReg": "2016-01-01", 
    "description": "In the context of the IMPACT2C project, one of the objectives is to estimate the pan-European impacts of a global 2-degree increase in temperature on human health, including change in air pollution. Climate change will affect atmospheric dispersion, biogenic and fire emissions, chemistry, and the frequency of extreme weather situations such as heat waves. These changes will have an impact on air quality with subsequent health consequences that must be evaluated. In order to evaluate how climate change will potentially affect the efficiency of emission abatement policies and how this will potentially affect health, several simulations have been conducted using different chemistry-transport models (CTMs): CHIMERE (IPSL), EMEP MSC-W (MET.NO), MATCH (SMHI), and MOCAGE (M\u00e9t\u00e9o-France). The use of four CTMs provide an estimate of the uncertainty in projections with the spread between models and driving meteorological data. To compare with future climate, the first step is to perform air quality simulations for the current climate: HINDCAST (CTMs forced by reanalysis boundary forcing ERA Interim) and HISTORICAL (global climate model boundary forcings). The comparisons between HINDCAST and HISTORICAL simulations allow to evaluate how global climate models modify climate hindcasts by boundary conditions inputs. In this study, we focus on particulate matter (PM10 and PM2.5) and its chemical composition. We first analyze whether the chemical composition of PM is affected by the use of climate models. We then investigate the contributions of the changes in meteorological parameters (frequency of precipitation, 2-m temperature, etc.) as well as emissions and depositions processes on surface PM. These results are the basis for analyzing future 2\u00b0 warming climates. Under the RCP4.5 scenario, simulations have been performed in order to calculate the effect of climate change on emission reduction scenarios, the climate penalty, as well as the effect of emission mitigation. This analysis also provide uncertainties associated to future AQ projections.", 
    "editor": [
      {
        "familyName": "Steyn", 
        "givenName": "Douw G.", 
        "type": "Person"
      }, 
      {
        "familyName": "Chaumerliac", 
        "givenName": "Nadine", 
        "type": "Person"
      }
    ], 
    "genre": "chapter", 
    "id": "sg:pub.10.1007/978-3-319-24478-5_35", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": {
      "isbn": [
        "978-3-319-24476-1", 
        "978-3-319-24478-5"
      ], 
      "name": "Air Pollution Modeling and its Application XXIV", 
      "type": "Book"
    }, 
    "name": "European Air Quality Simulations in the Context of IMPACT2C, Focus on Aerosol Concentrations", 
    "pagination": "213-217", 
    "productId": [
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/978-3-319-24478-5_35"
        ]
      }, 
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "0acccf41dbd6e93061652e1170c53b1ee63e924ec863008020146b67215447c2"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1002268389"
        ]
      }
    ], 
    "publisher": {
      "location": "Cham", 
      "name": "Springer International Publishing", 
      "type": "Organisation"
    }, 
    "sameAs": [
      "https://doi.org/10.1007/978-3-319-24478-5_35", 
      "https://app.dimensions.ai/details/publication/pub.1002268389"
    ], 
    "sdDataset": "chapters", 
    "sdDatePublished": "2019-04-15T18:08", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8681_00000244.jsonl", 
    "type": "Chapter", 
    "url": "http://link.springer.com/10.1007/978-3-319-24478-5_35"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/978-3-319-24478-5_35'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/978-3-319-24478-5_35'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/978-3-319-24478-5_35'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/978-3-319-24478-5_35'


 

This table displays all metadata directly associated to this object as RDF triples.

208 TRIPLES      23 PREDICATES      34 URIs      20 LITERALS      8 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/978-3-319-24478-5_35 schema:about anzsrc-for:04
2 anzsrc-for:0401
3 schema:author N56e3526f9a5f417f83e0f487a9610bf9
4 schema:citation sg:pub.10.1007/s00382-012-1345-9
5 https://doi.org/10.1016/j.atmosenv.2004.02.034
6 https://doi.org/10.1034/j.1600-0889.1998.t01-2-00001.x
7 https://doi.org/10.1111/j.1600-0889.2004.00112.x
8 https://doi.org/10.1111/j.1600-0889.2006.00196.x
9 https://doi.org/10.1175/1520-0450(1999)038<0190:aelaat>2.0.co;2
10 https://doi.org/10.5194/acp-12-7825-2012
11 schema:datePublished 2016
12 schema:datePublishedReg 2016-01-01
13 schema:description In the context of the IMPACT2C project, one of the objectives is to estimate the pan-European impacts of a global 2-degree increase in temperature on human health, including change in air pollution. Climate change will affect atmospheric dispersion, biogenic and fire emissions, chemistry, and the frequency of extreme weather situations such as heat waves. These changes will have an impact on air quality with subsequent health consequences that must be evaluated. In order to evaluate how climate change will potentially affect the efficiency of emission abatement policies and how this will potentially affect health, several simulations have been conducted using different chemistry-transport models (CTMs): CHIMERE (IPSL), EMEP MSC-W (MET.NO), MATCH (SMHI), and MOCAGE (Météo-France). The use of four CTMs provide an estimate of the uncertainty in projections with the spread between models and driving meteorological data. To compare with future climate, the first step is to perform air quality simulations for the current climate: HINDCAST (CTMs forced by reanalysis boundary forcing ERA Interim) and HISTORICAL (global climate model boundary forcings). The comparisons between HINDCAST and HISTORICAL simulations allow to evaluate how global climate models modify climate hindcasts by boundary conditions inputs. In this study, we focus on particulate matter (PM10 and PM2.5) and its chemical composition. We first analyze whether the chemical composition of PM is affected by the use of climate models. We then investigate the contributions of the changes in meteorological parameters (frequency of precipitation, 2-m temperature, etc.) as well as emissions and depositions processes on surface PM. These results are the basis for analyzing future 2° warming climates. Under the RCP4.5 scenario, simulations have been performed in order to calculate the effect of climate change on emission reduction scenarios, the climate penalty, as well as the effect of emission mitigation. This analysis also provide uncertainties associated to future AQ projections.
14 schema:editor N626fb89f49e94fb08404326ba63fb9d3
15 schema:genre chapter
16 schema:inLanguage en
17 schema:isAccessibleForFree false
18 schema:isPartOf N4d28467391ca49faa40c2d671719af13
19 schema:name European Air Quality Simulations in the Context of IMPACT2C, Focus on Aerosol Concentrations
20 schema:pagination 213-217
21 schema:productId N098b2d3187d046f695cc44f4bedb42db
22 N0ef0dd8082964310bf38333e92761b4d
23 Nd110b508d1c149d39f815484365f88f9
24 schema:publisher Ne921d98d83bb4735aa368a1856f03cbf
25 schema:sameAs https://app.dimensions.ai/details/publication/pub.1002268389
26 https://doi.org/10.1007/978-3-319-24478-5_35
27 schema:sdDatePublished 2019-04-15T18:08
28 schema:sdLicense https://scigraph.springernature.com/explorer/license/
29 schema:sdPublisher N9d3c737bf71845069ef46bcfa1545b71
30 schema:url http://link.springer.com/10.1007/978-3-319-24478-5_35
31 sgo:license sg:explorer/license/
32 sgo:sdDataset chapters
33 rdf:type schema:Chapter
34 N063760448ade4782afd5b4dc03406416 rdf:first sg:person.010045072003.34
35 rdf:rest N17b44e51f0a641f6875cc27966173bfb
36 N082fd0889e3047ef89fd110530ab5f8c rdf:first sg:person.01176210233.76
37 rdf:rest N54a97cd480394300afdd5896211ddebc
38 N098b2d3187d046f695cc44f4bedb42db schema:name doi
39 schema:value 10.1007/978-3-319-24478-5_35
40 rdf:type schema:PropertyValue
41 N0ecad5cceaad4aab9c1165b5b1f8bcfa rdf:first sg:person.015323212356.55
42 rdf:rest N082fd0889e3047ef89fd110530ab5f8c
43 N0ef0dd8082964310bf38333e92761b4d schema:name readcube_id
44 schema:value 0acccf41dbd6e93061652e1170c53b1ee63e924ec863008020146b67215447c2
45 rdf:type schema:PropertyValue
46 N139711425ede4a81967f4e71dde94824 schema:name Laboratoire Interuniversitaire des Systèmes Atmosphériques (LISA), Université Paris Est et 7, CNRS
47 rdf:type schema:Organization
48 N15d9e1bbb03647b8aaeba611d4e9ceb4 schema:name SMHI
49 rdf:type schema:Organization
50 N16e177a2e6794268b5af2fe8ca492f4d rdf:first sg:person.016521132204.08
51 rdf:rest N0ecad5cceaad4aab9c1165b5b1f8bcfa
52 N17b44e51f0a641f6875cc27966173bfb rdf:first sg:person.014564735611.41
53 rdf:rest N65da7ce2f386444dafaaeac02775439d
54 N23469de58fdc404c95b8aa58da12e9ef rdf:first sg:person.07522740611.73
55 rdf:rest Nf9a544adb77e4b43bd803137db13c2e9
56 N26de4abc46b44fa19be45d13f7f9a2ca schema:name CNRM-GAME, Météo France/CNRS
57 rdf:type schema:Organization
58 N320afec082034d828e626f646b293de5 schema:name Laboratoire Interuniversitaire des Systèmes Atmosphériques (LISA), Université Paris Est et 7, CNRS
59 rdf:type schema:Organization
60 N3408b509f534495e80613a6e9686aa04 rdf:first sg:person.010240707666.08
61 rdf:rest N829796e42390490d8fa87a8e7b448bdf
62 N42c285155b7f4eda9cfb0eb2e60a6dcd schema:name EMEP MSC-W, Norwegian Meteorological Institute
63 rdf:type schema:Organization
64 N4ad3074dc870434cac9ecda5921574b4 rdf:first N757572bffd2646f8bb45535b9da10d29
65 rdf:rest rdf:nil
66 N4d28467391ca49faa40c2d671719af13 schema:isbn 978-3-319-24476-1
67 978-3-319-24478-5
68 schema:name Air Pollution Modeling and its Application XXIV
69 rdf:type schema:Book
70 N54a97cd480394300afdd5896211ddebc rdf:first sg:person.01133176454.21
71 rdf:rest N063760448ade4782afd5b4dc03406416
72 N56b3515326c8492298c36235246bfbd8 schema:name Laboratoire Interuniversitaire des Systèmes Atmosphériques (LISA), Université Paris Est et 7, CNRS
73 rdf:type schema:Organization
74 N56e3526f9a5f417f83e0f487a9610bf9 rdf:first sg:person.015320425145.88
75 rdf:rest N16e177a2e6794268b5af2fe8ca492f4d
76 N59057118f2c34313993b6a109c745b5d schema:familyName Steyn
77 schema:givenName Douw G.
78 rdf:type schema:Person
79 N626fb89f49e94fb08404326ba63fb9d3 rdf:first N59057118f2c34313993b6a109c745b5d
80 rdf:rest N4ad3074dc870434cac9ecda5921574b4
81 N633cca55a859464a9b0ca26cd3a79c07 schema:name CNRM-GAME, Météo France/CNRS
82 rdf:type schema:Organization
83 N65da7ce2f386444dafaaeac02775439d rdf:first sg:person.013770701131.47
84 rdf:rest N7e912f94d1a84faeb51a8451c47192f3
85 N6982a536b7fe49f5bb9b12f7f8650d50 schema:name UNI Research, The Bjerknes Centre for Climate Research
86 rdf:type schema:Organization
87 N757572bffd2646f8bb45535b9da10d29 schema:familyName Chaumerliac
88 schema:givenName Nadine
89 rdf:type schema:Person
90 N79851f5706e6440d9f928dc6101b1b67 schema:name INERIS
91 rdf:type schema:Organization
92 N7e912f94d1a84faeb51a8451c47192f3 rdf:first sg:person.012541003255.14
93 rdf:rest N9bb78ceb60d34991a338db7a99bef843
94 N829796e42390490d8fa87a8e7b448bdf rdf:first sg:person.014714561747.82
95 rdf:rest N23469de58fdc404c95b8aa58da12e9ef
96 N830ffd99fbc846038d8322e7bd187aa5 schema:name CNRM-GAME, Météo France/CNRS
97 rdf:type schema:Organization
98 N9bb78ceb60d34991a338db7a99bef843 rdf:first sg:person.013373774767.39
99 rdf:rest N3408b509f534495e80613a6e9686aa04
100 N9d3c737bf71845069ef46bcfa1545b71 schema:name Springer Nature - SN SciGraph project
101 rdf:type schema:Organization
102 Naa68dcb3ba8948618dfb7c6f6f87c222 schema:name SMHI
103 rdf:type schema:Organization
104 Nb1c3b075652c4580b048c160d995e675 schema:name Laboratoire Interuniversitaire des Systèmes Atmosphériques (LISA), Université Paris Est et 7, CNRS
105 rdf:type schema:Organization
106 Nd110b508d1c149d39f815484365f88f9 schema:name dimensions_id
107 schema:value pub.1002268389
108 rdf:type schema:PropertyValue
109 Nd507d156ba994c7e8630b7b0d490d99d schema:name Laboratoire des Sciences du Climat et de l’Environnement, LSCE, CEA-CNRS-UVSQ
110 rdf:type schema:Organization
111 Ne921d98d83bb4735aa368a1856f03cbf schema:location Cham
112 schema:name Springer International Publishing
113 rdf:type schema:Organisation
114 Nf5c5b8172d63436e9e48bea04c43e099 schema:name EMEP MSC-W, Norwegian Meteorological Institute
115 rdf:type schema:Organization
116 Nf9a544adb77e4b43bd803137db13c2e9 rdf:first sg:person.0637243716.97
117 rdf:rest rdf:nil
118 anzsrc-for:04 schema:inDefinedTermSet anzsrc-for:
119 schema:name Earth Sciences
120 rdf:type schema:DefinedTerm
121 anzsrc-for:0401 schema:inDefinedTermSet anzsrc-for:
122 schema:name Atmospheric Sciences
123 rdf:type schema:DefinedTerm
124 sg:person.010045072003.34 schema:affiliation N56b3515326c8492298c36235246bfbd8
125 schema:familyName Beekmann
126 schema:givenName M.
127 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010045072003.34
128 rdf:type schema:Person
129 sg:person.010240707666.08 schema:affiliation Nf5c5b8172d63436e9e48bea04c43e099
130 schema:familyName Nyiri
131 schema:givenName A.
132 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010240707666.08
133 rdf:type schema:Person
134 sg:person.01133176454.21 schema:affiliation N15d9e1bbb03647b8aaeba611d4e9ceb4
135 schema:familyName Andersson
136 schema:givenName C.
137 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01133176454.21
138 rdf:type schema:Person
139 sg:person.01176210233.76 schema:affiliation N42c285155b7f4eda9cfb0eb2e60a6dcd
140 schema:familyName Gauss
141 schema:givenName M.
142 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01176210233.76
143 rdf:type schema:Person
144 sg:person.012541003255.14 schema:affiliation N830ffd99fbc846038d8322e7bd187aa5
145 schema:familyName Josse
146 schema:givenName B.
147 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012541003255.14
148 rdf:type schema:Person
149 sg:person.013373774767.39 schema:affiliation N26de4abc46b44fa19be45d13f7f9a2ca
150 schema:familyName Marécal
151 schema:givenName V.
152 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013373774767.39
153 rdf:type schema:Person
154 sg:person.013770701131.47 schema:affiliation N320afec082034d828e626f646b293de5
155 schema:familyName Foret
156 schema:givenName G.
157 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013770701131.47
158 rdf:type schema:Person
159 sg:person.014564735611.41 schema:affiliation N79851f5706e6440d9f928dc6101b1b67
160 schema:familyName Colette
161 schema:givenName A.
162 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014564735611.41
163 rdf:type schema:Person
164 sg:person.014714561747.82 schema:affiliation N139711425ede4a81967f4e71dde94824
165 schema:familyName Siour
166 schema:givenName G.
167 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014714561747.82
168 rdf:type schema:Person
169 sg:person.015320425145.88 schema:affiliation Nb1c3b075652c4580b048c160d995e675
170 schema:familyName Lacressonnière
171 schema:givenName G.
172 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015320425145.88
173 rdf:type schema:Person
174 sg:person.015323212356.55 schema:affiliation Naa68dcb3ba8948618dfb7c6f6f87c222
175 schema:familyName Engardt
176 schema:givenName M.
177 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015323212356.55
178 rdf:type schema:Person
179 sg:person.016521132204.08 schema:affiliation N633cca55a859464a9b0ca26cd3a79c07
180 schema:familyName Watson
181 schema:givenName L.
182 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016521132204.08
183 rdf:type schema:Person
184 sg:person.0637243716.97 schema:affiliation Nd507d156ba994c7e8630b7b0d490d99d
185 schema:familyName Vautard
186 schema:givenName R.
187 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0637243716.97
188 rdf:type schema:Person
189 sg:person.07522740611.73 schema:affiliation N6982a536b7fe49f5bb9b12f7f8650d50
190 schema:familyName Sobolowski
191 schema:givenName S.
192 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07522740611.73
193 rdf:type schema:Person
194 sg:pub.10.1007/s00382-012-1345-9 schema:sameAs https://app.dimensions.ai/details/publication/pub.1050867369
195 https://doi.org/10.1007/s00382-012-1345-9
196 rdf:type schema:CreativeWork
197 https://doi.org/10.1016/j.atmosenv.2004.02.034 schema:sameAs https://app.dimensions.ai/details/publication/pub.1046431666
198 rdf:type schema:CreativeWork
199 https://doi.org/10.1034/j.1600-0889.1998.t01-2-00001.x schema:sameAs https://app.dimensions.ai/details/publication/pub.1042317916
200 rdf:type schema:CreativeWork
201 https://doi.org/10.1111/j.1600-0889.2004.00112.x schema:sameAs https://app.dimensions.ai/details/publication/pub.1015442418
202 rdf:type schema:CreativeWork
203 https://doi.org/10.1111/j.1600-0889.2006.00196.x schema:sameAs https://app.dimensions.ai/details/publication/pub.1002454823
204 rdf:type schema:CreativeWork
205 https://doi.org/10.1175/1520-0450(1999)038<0190:aelaat>2.0.co;2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1051246848
206 rdf:type schema:CreativeWork
207 https://doi.org/10.5194/acp-12-7825-2012 schema:sameAs https://app.dimensions.ai/details/publication/pub.1018306262
208 rdf:type schema:CreativeWork
 




Preview window. Press ESC to close (or click here)


...