Neumann Series Analysis of the Wigner Equation Solution View Full Text


Ontology type: schema:Chapter     


Chapter Info

DATE

2016

AUTHORS

I. Dimov , M. Nedjalkov , J. M. Sellier , S. Selberherr

ABSTRACT

The existence and uniqueness of the electron transport Wigner equation solution, determined by boundary conditions, is analyzed in terms of the Neumann series expansion of the integral form of the equation, obtained with the help of Newton’s trajectories. For understanding of the peculiarities of Wigner-quantum electron transport in semiconductor structures such mathematical issues can not be separated from the physical attributes of the solution. In the presented analysis these two sides of the problem mutually interplay.The problem is first formulated from a physical point of view, where the stationary solution is considered as the long time limit of the general evolution problem posed by both initial and boundary conditions. The proof of convergence relies on the assumption for reasonable local conditions which may be specified for the kernel and on the fact that the Neumann series expansion corresponds to an integral equation of Volterra type with respect to the time variable. More... »

PAGES

701-707

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/978-3-319-23413-7_97

DOI

http://dx.doi.org/10.1007/978-3-319-23413-7_97

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1091476296


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/01", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Mathematical Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0101", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Pure Mathematics", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "IICT, Bulgarian Academy of Sciences, Acad. G. Bonchev 25 A, 1113, Sofia, Bulgaria", 
          "id": "http://www.grid.ac/institutes/grid.424988.b", 
          "name": [
            "IICT, Bulgarian Academy of Sciences, Acad. G. Bonchev 25 A, 1113, Sofia, Bulgaria"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Dimov", 
        "givenName": "I.", 
        "id": "sg:person.013060500063.42", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013060500063.42"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Institute for Microelectronics, TU Wien, Gu\u00dfhausstra\u00dfe 27-29, 1040, Vienna, Austria", 
          "id": "http://www.grid.ac/institutes/grid.5329.d", 
          "name": [
            "Institute for Microelectronics, TU Wien, Gu\u00dfhausstra\u00dfe 27-29, 1040, Vienna, Austria"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Nedjalkov", 
        "givenName": "M.", 
        "id": "sg:person.011142023427.48", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011142023427.48"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "IICT, Bulgarian Academy of Sciences, Acad. G. Bonchev 25 A, 1113, Sofia, Bulgaria", 
          "id": "http://www.grid.ac/institutes/grid.424988.b", 
          "name": [
            "IICT, Bulgarian Academy of Sciences, Acad. G. Bonchev 25 A, 1113, Sofia, Bulgaria"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Sellier", 
        "givenName": "J. M.", 
        "id": "sg:person.016145177374.75", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016145177374.75"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Institute for Microelectronics, TU Wien, Gu\u00dfhausstra\u00dfe 27-29, 1040, Vienna, Austria", 
          "id": "http://www.grid.ac/institutes/grid.5329.d", 
          "name": [
            "Institute for Microelectronics, TU Wien, Gu\u00dfhausstra\u00dfe 27-29, 1040, Vienna, Austria"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Selberherr", 
        "givenName": "S.", 
        "id": "sg:person.013033344117.92", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013033344117.92"
        ], 
        "type": "Person"
      }
    ], 
    "datePublished": "2016", 
    "datePublishedReg": "2016-01-01", 
    "description": "The existence and uniqueness of the electron transport Wigner equation solution, determined by boundary conditions, is analyzed in terms of the Neumann series expansion of the integral form of the equation, obtained with the help of Newton\u2019s trajectories. For understanding of the peculiarities of Wigner-quantum electron transport in semiconductor structures such mathematical issues can not be separated from the physical attributes of the solution. In the presented analysis these two sides of the problem mutually interplay.The problem is first formulated from a physical point of view, where the stationary solution is considered as the long time limit of the general evolution problem posed by both initial and boundary conditions. The proof of convergence relies on the assumption for reasonable local conditions which may be specified for the kernel and on the fact that the Neumann series expansion corresponds to an integral equation of Volterra type with respect to the time variable.", 
    "editor": [
      {
        "familyName": "Russo", 
        "givenName": "Giovanni", 
        "type": "Person"
      }, 
      {
        "familyName": "Capasso", 
        "givenName": "Vincenzo", 
        "type": "Person"
      }, 
      {
        "familyName": "Nicosia", 
        "givenName": "Giuseppe", 
        "type": "Person"
      }, 
      {
        "familyName": "Romano", 
        "givenName": "Vittorio", 
        "type": "Person"
      }
    ], 
    "genre": "chapter", 
    "id": "sg:pub.10.1007/978-3-319-23413-7_97", 
    "inLanguage": "en", 
    "isAccessibleForFree": false, 
    "isPartOf": {
      "isbn": [
        "978-3-319-23412-0", 
        "978-3-319-23413-7"
      ], 
      "name": "Progress in Industrial Mathematics at ECMI 2014", 
      "type": "Book"
    }, 
    "keywords": [
      "Neumann series expansion", 
      "equation solution", 
      "general evolution problem", 
      "series expansion", 
      "boundary conditions", 
      "long-time limit", 
      "Volterra type", 
      "mathematical issues", 
      "stationary solutions", 
      "integral equations", 
      "evolution problem", 
      "integral form", 
      "physical point", 
      "equations", 
      "Newton trajectories", 
      "solution", 
      "series analysis", 
      "problem", 
      "trajectories", 
      "uniqueness", 
      "time limit", 
      "electron transport", 
      "kernel", 
      "existence", 
      "expansion", 
      "proof", 
      "assumption", 
      "conditions", 
      "terms", 
      "point", 
      "limit", 
      "respect", 
      "help", 
      "analysis", 
      "transport", 
      "form", 
      "peculiarities", 
      "relies", 
      "physical attributes", 
      "fact", 
      "time", 
      "types", 
      "local conditions", 
      "view", 
      "side", 
      "issues", 
      "understanding", 
      "attributes"
    ], 
    "name": "Neumann Series Analysis of the Wigner Equation Solution", 
    "pagination": "701-707", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1091476296"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/978-3-319-23413-7_97"
        ]
      }
    ], 
    "publisher": {
      "name": "Springer Nature", 
      "type": "Organisation"
    }, 
    "sameAs": [
      "https://doi.org/10.1007/978-3-319-23413-7_97", 
      "https://app.dimensions.ai/details/publication/pub.1091476296"
    ], 
    "sdDataset": "chapters", 
    "sdDatePublished": "2022-05-20T07:42", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20220519/entities/gbq_results/chapter/chapter_16.jsonl", 
    "type": "Chapter", 
    "url": "https://doi.org/10.1007/978-3-319-23413-7_97"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/978-3-319-23413-7_97'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/978-3-319-23413-7_97'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/978-3-319-23413-7_97'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/978-3-319-23413-7_97'


 

This table displays all metadata directly associated to this object as RDF triples.

147 TRIPLES      23 PREDICATES      74 URIs      67 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/978-3-319-23413-7_97 schema:about anzsrc-for:01
2 anzsrc-for:0101
3 schema:author N8aaafb3124f147d78fd4eba43254cc51
4 schema:datePublished 2016
5 schema:datePublishedReg 2016-01-01
6 schema:description The existence and uniqueness of the electron transport Wigner equation solution, determined by boundary conditions, is analyzed in terms of the Neumann series expansion of the integral form of the equation, obtained with the help of Newton’s trajectories. For understanding of the peculiarities of Wigner-quantum electron transport in semiconductor structures such mathematical issues can not be separated from the physical attributes of the solution. In the presented analysis these two sides of the problem mutually interplay.The problem is first formulated from a physical point of view, where the stationary solution is considered as the long time limit of the general evolution problem posed by both initial and boundary conditions. The proof of convergence relies on the assumption for reasonable local conditions which may be specified for the kernel and on the fact that the Neumann series expansion corresponds to an integral equation of Volterra type with respect to the time variable.
7 schema:editor Neac4ebe0fb8840b78e8280af47920caf
8 schema:genre chapter
9 schema:inLanguage en
10 schema:isAccessibleForFree false
11 schema:isPartOf Nd889291e245d4d6dbd7d8c8aaf216517
12 schema:keywords Neumann series expansion
13 Newton trajectories
14 Volterra type
15 analysis
16 assumption
17 attributes
18 boundary conditions
19 conditions
20 electron transport
21 equation solution
22 equations
23 evolution problem
24 existence
25 expansion
26 fact
27 form
28 general evolution problem
29 help
30 integral equations
31 integral form
32 issues
33 kernel
34 limit
35 local conditions
36 long-time limit
37 mathematical issues
38 peculiarities
39 physical attributes
40 physical point
41 point
42 problem
43 proof
44 relies
45 respect
46 series analysis
47 series expansion
48 side
49 solution
50 stationary solutions
51 terms
52 time
53 time limit
54 trajectories
55 transport
56 types
57 understanding
58 uniqueness
59 view
60 schema:name Neumann Series Analysis of the Wigner Equation Solution
61 schema:pagination 701-707
62 schema:productId N9ba3c6470cf64120821f86ca2db82b31
63 Nc939188522084d8fa45f716ea6f07b67
64 schema:publisher Ne29a2f3070dc43bcacb089835628f0fa
65 schema:sameAs https://app.dimensions.ai/details/publication/pub.1091476296
66 https://doi.org/10.1007/978-3-319-23413-7_97
67 schema:sdDatePublished 2022-05-20T07:42
68 schema:sdLicense https://scigraph.springernature.com/explorer/license/
69 schema:sdPublisher N539be8d2e50544e4ac0277cc849d11ec
70 schema:url https://doi.org/10.1007/978-3-319-23413-7_97
71 sgo:license sg:explorer/license/
72 sgo:sdDataset chapters
73 rdf:type schema:Chapter
74 N0440b875432b41438854475898c9567a schema:familyName Capasso
75 schema:givenName Vincenzo
76 rdf:type schema:Person
77 N2fbdaedc0a7243a9887bd954b9a8982b rdf:first Nefb34541b4fb46c4afa54f1476689660
78 rdf:rest rdf:nil
79 N46cf8d00e17341da9dd23d1ff9b06225 rdf:first sg:person.016145177374.75
80 rdf:rest Nca1c0636f600435a9498e88be3594c01
81 N539be8d2e50544e4ac0277cc849d11ec schema:name Springer Nature - SN SciGraph project
82 rdf:type schema:Organization
83 N7775ea8a519c48899909f4cb51dc878b schema:familyName Russo
84 schema:givenName Giovanni
85 rdf:type schema:Person
86 N8aaafb3124f147d78fd4eba43254cc51 rdf:first sg:person.013060500063.42
87 rdf:rest N9f0ae172cdaa4a77822bfc7f735fbef3
88 N9ba3c6470cf64120821f86ca2db82b31 schema:name dimensions_id
89 schema:value pub.1091476296
90 rdf:type schema:PropertyValue
91 N9f0ae172cdaa4a77822bfc7f735fbef3 rdf:first sg:person.011142023427.48
92 rdf:rest N46cf8d00e17341da9dd23d1ff9b06225
93 Nb93a8f4ca3164f5695b0d7e2c6a3740b rdf:first Ne4c9667f5d8c4a9ca585568e553fb3e4
94 rdf:rest N2fbdaedc0a7243a9887bd954b9a8982b
95 Nbe55ce81d3d94b74ae68ecd80f2fd996 rdf:first N0440b875432b41438854475898c9567a
96 rdf:rest Nb93a8f4ca3164f5695b0d7e2c6a3740b
97 Nc939188522084d8fa45f716ea6f07b67 schema:name doi
98 schema:value 10.1007/978-3-319-23413-7_97
99 rdf:type schema:PropertyValue
100 Nca1c0636f600435a9498e88be3594c01 rdf:first sg:person.013033344117.92
101 rdf:rest rdf:nil
102 Nd889291e245d4d6dbd7d8c8aaf216517 schema:isbn 978-3-319-23412-0
103 978-3-319-23413-7
104 schema:name Progress in Industrial Mathematics at ECMI 2014
105 rdf:type schema:Book
106 Ne29a2f3070dc43bcacb089835628f0fa schema:name Springer Nature
107 rdf:type schema:Organisation
108 Ne4c9667f5d8c4a9ca585568e553fb3e4 schema:familyName Nicosia
109 schema:givenName Giuseppe
110 rdf:type schema:Person
111 Neac4ebe0fb8840b78e8280af47920caf rdf:first N7775ea8a519c48899909f4cb51dc878b
112 rdf:rest Nbe55ce81d3d94b74ae68ecd80f2fd996
113 Nefb34541b4fb46c4afa54f1476689660 schema:familyName Romano
114 schema:givenName Vittorio
115 rdf:type schema:Person
116 anzsrc-for:01 schema:inDefinedTermSet anzsrc-for:
117 schema:name Mathematical Sciences
118 rdf:type schema:DefinedTerm
119 anzsrc-for:0101 schema:inDefinedTermSet anzsrc-for:
120 schema:name Pure Mathematics
121 rdf:type schema:DefinedTerm
122 sg:person.011142023427.48 schema:affiliation grid-institutes:grid.5329.d
123 schema:familyName Nedjalkov
124 schema:givenName M.
125 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011142023427.48
126 rdf:type schema:Person
127 sg:person.013033344117.92 schema:affiliation grid-institutes:grid.5329.d
128 schema:familyName Selberherr
129 schema:givenName S.
130 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013033344117.92
131 rdf:type schema:Person
132 sg:person.013060500063.42 schema:affiliation grid-institutes:grid.424988.b
133 schema:familyName Dimov
134 schema:givenName I.
135 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013060500063.42
136 rdf:type schema:Person
137 sg:person.016145177374.75 schema:affiliation grid-institutes:grid.424988.b
138 schema:familyName Sellier
139 schema:givenName J. M.
140 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016145177374.75
141 rdf:type schema:Person
142 grid-institutes:grid.424988.b schema:alternateName IICT, Bulgarian Academy of Sciences, Acad. G. Bonchev 25 A, 1113, Sofia, Bulgaria
143 schema:name IICT, Bulgarian Academy of Sciences, Acad. G. Bonchev 25 A, 1113, Sofia, Bulgaria
144 rdf:type schema:Organization
145 grid-institutes:grid.5329.d schema:alternateName Institute for Microelectronics, TU Wien, Gußhausstraße 27-29, 1040, Vienna, Austria
146 schema:name Institute for Microelectronics, TU Wien, Gußhausstraße 27-29, 1040, Vienna, Austria
147 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...