Ontology type: schema:Chapter
2016
AUTHORSI. Dimov , M. Nedjalkov , J. M. Sellier , S. Selberherr
ABSTRACTThe existence and uniqueness of the electron transport Wigner equation solution, determined by boundary conditions, is analyzed in terms of the Neumann series expansion of the integral form of the equation, obtained with the help of Newton’s trajectories. For understanding of the peculiarities of Wigner-quantum electron transport in semiconductor structures such mathematical issues can not be separated from the physical attributes of the solution. In the presented analysis these two sides of the problem mutually interplay.The problem is first formulated from a physical point of view, where the stationary solution is considered as the long time limit of the general evolution problem posed by both initial and boundary conditions. The proof of convergence relies on the assumption for reasonable local conditions which may be specified for the kernel and on the fact that the Neumann series expansion corresponds to an integral equation of Volterra type with respect to the time variable. More... »
PAGES701-707
Progress in Industrial Mathematics at ECMI 2014
ISBN
978-3-319-23412-0
978-3-319-23413-7
http://scigraph.springernature.com/pub.10.1007/978-3-319-23413-7_97
DOIhttp://dx.doi.org/10.1007/978-3-319-23413-7_97
DIMENSIONShttps://app.dimensions.ai/details/publication/pub.1091476296
JSON-LD is the canonical representation for SciGraph data.
TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT
[
{
"@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json",
"about": [
{
"id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/01",
"inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/",
"name": "Mathematical Sciences",
"type": "DefinedTerm"
},
{
"id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0101",
"inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/",
"name": "Pure Mathematics",
"type": "DefinedTerm"
}
],
"author": [
{
"affiliation": {
"alternateName": "IICT, Bulgarian Academy of Sciences, Acad. G. Bonchev 25 A, 1113, Sofia, Bulgaria",
"id": "http://www.grid.ac/institutes/grid.424988.b",
"name": [
"IICT, Bulgarian Academy of Sciences, Acad. G. Bonchev 25 A, 1113, Sofia, Bulgaria"
],
"type": "Organization"
},
"familyName": "Dimov",
"givenName": "I.",
"id": "sg:person.013060500063.42",
"sameAs": [
"https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013060500063.42"
],
"type": "Person"
},
{
"affiliation": {
"alternateName": "Institute for Microelectronics, TU Wien, Gu\u00dfhausstra\u00dfe 27-29, 1040, Vienna, Austria",
"id": "http://www.grid.ac/institutes/grid.5329.d",
"name": [
"Institute for Microelectronics, TU Wien, Gu\u00dfhausstra\u00dfe 27-29, 1040, Vienna, Austria"
],
"type": "Organization"
},
"familyName": "Nedjalkov",
"givenName": "M.",
"id": "sg:person.011142023427.48",
"sameAs": [
"https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011142023427.48"
],
"type": "Person"
},
{
"affiliation": {
"alternateName": "IICT, Bulgarian Academy of Sciences, Acad. G. Bonchev 25 A, 1113, Sofia, Bulgaria",
"id": "http://www.grid.ac/institutes/grid.424988.b",
"name": [
"IICT, Bulgarian Academy of Sciences, Acad. G. Bonchev 25 A, 1113, Sofia, Bulgaria"
],
"type": "Organization"
},
"familyName": "Sellier",
"givenName": "J. M.",
"id": "sg:person.016145177374.75",
"sameAs": [
"https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016145177374.75"
],
"type": "Person"
},
{
"affiliation": {
"alternateName": "Institute for Microelectronics, TU Wien, Gu\u00dfhausstra\u00dfe 27-29, 1040, Vienna, Austria",
"id": "http://www.grid.ac/institutes/grid.5329.d",
"name": [
"Institute for Microelectronics, TU Wien, Gu\u00dfhausstra\u00dfe 27-29, 1040, Vienna, Austria"
],
"type": "Organization"
},
"familyName": "Selberherr",
"givenName": "S.",
"id": "sg:person.013033344117.92",
"sameAs": [
"https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013033344117.92"
],
"type": "Person"
}
],
"datePublished": "2016",
"datePublishedReg": "2016-01-01",
"description": "The existence and uniqueness of the electron transport Wigner equation solution, determined by boundary conditions, is analyzed in terms of the Neumann series expansion of the integral form of the equation, obtained with the help of Newton\u2019s trajectories. For understanding of the peculiarities of Wigner-quantum electron transport in semiconductor structures such mathematical issues can not be separated from the physical attributes of the solution. In the presented analysis these two sides of the problem mutually interplay.The problem is first formulated from a physical point of view, where the stationary solution is considered as the long time limit of the general evolution problem posed by both initial and boundary conditions. The proof of convergence relies on the assumption for reasonable local conditions which may be specified for the kernel and on the fact that the Neumann series expansion corresponds to an integral equation of Volterra type with respect to the time variable.",
"editor": [
{
"familyName": "Russo",
"givenName": "Giovanni",
"type": "Person"
},
{
"familyName": "Capasso",
"givenName": "Vincenzo",
"type": "Person"
},
{
"familyName": "Nicosia",
"givenName": "Giuseppe",
"type": "Person"
},
{
"familyName": "Romano",
"givenName": "Vittorio",
"type": "Person"
}
],
"genre": "chapter",
"id": "sg:pub.10.1007/978-3-319-23413-7_97",
"inLanguage": "en",
"isAccessibleForFree": false,
"isPartOf": {
"isbn": [
"978-3-319-23412-0",
"978-3-319-23413-7"
],
"name": "Progress in Industrial Mathematics at ECMI 2014",
"type": "Book"
},
"keywords": [
"Neumann series expansion",
"equation solution",
"general evolution problem",
"series expansion",
"boundary conditions",
"long-time limit",
"Volterra type",
"mathematical issues",
"stationary solutions",
"integral equations",
"evolution problem",
"integral form",
"physical point",
"equations",
"Newton trajectories",
"solution",
"series analysis",
"problem",
"trajectories",
"uniqueness",
"time limit",
"electron transport",
"kernel",
"existence",
"expansion",
"proof",
"assumption",
"conditions",
"terms",
"point",
"limit",
"respect",
"help",
"analysis",
"transport",
"form",
"peculiarities",
"relies",
"physical attributes",
"fact",
"time",
"types",
"local conditions",
"view",
"side",
"issues",
"understanding",
"attributes"
],
"name": "Neumann Series Analysis of the Wigner Equation Solution",
"pagination": "701-707",
"productId": [
{
"name": "dimensions_id",
"type": "PropertyValue",
"value": [
"pub.1091476296"
]
},
{
"name": "doi",
"type": "PropertyValue",
"value": [
"10.1007/978-3-319-23413-7_97"
]
}
],
"publisher": {
"name": "Springer Nature",
"type": "Organisation"
},
"sameAs": [
"https://doi.org/10.1007/978-3-319-23413-7_97",
"https://app.dimensions.ai/details/publication/pub.1091476296"
],
"sdDataset": "chapters",
"sdDatePublished": "2022-05-20T07:42",
"sdLicense": "https://scigraph.springernature.com/explorer/license/",
"sdPublisher": {
"name": "Springer Nature - SN SciGraph project",
"type": "Organization"
},
"sdSource": "s3://com-springernature-scigraph/baseset/20220519/entities/gbq_results/chapter/chapter_16.jsonl",
"type": "Chapter",
"url": "https://doi.org/10.1007/978-3-319-23413-7_97"
}
]
Download the RDF metadata as: json-ld nt turtle xml License info
JSON-LD is a popular format for linked data which is fully compatible with JSON.
curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/978-3-319-23413-7_97'
N-Triples is a line-based linked data format ideal for batch operations.
curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/978-3-319-23413-7_97'
Turtle is a human-readable linked data format.
curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/978-3-319-23413-7_97'
RDF/XML is a standard XML format for linked data.
curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/978-3-319-23413-7_97'
This table displays all metadata directly associated to this object as RDF triples.
147 TRIPLES
23 PREDICATES
74 URIs
67 LITERALS
7 BLANK NODES