Stochastic Analysis of Chemical Reaction Networks Using Linear Noise Approximation View Full Text


Ontology type: schema:Chapter      Open Access: True


Chapter Info

DATE

2015-09-02

AUTHORS

Luca Cardelli , Marta Kwiatkowska , Luca Laurenti

ABSTRACT

Stochastic evolution of Chemical Reactions Networks (CRNs) over time is usually analysed through solving the Chemical Master Equation (CME) or performing extensive simulations. Analysing stochasticity is often needed, particularly when some molecules occur in low numbers. Unfortunately, both approaches become infeasible if the system is complex and/or it cannot be ensured that initial populations are small. We develop a probabilistic logic for CRNs that enables stochastic analysis of the evolution of populations of molecular species. We present an approximate model checking algorithm based on the Linear Noise Approximation (LNA) of the CME, whose computational complexity is independent of the population size of each species and polynomial in the number of different species. The algorithm requires the solution of first order polynomial differential equations. We prove that our approach is valid for any CRN close enough to the thermodynamical limit. However, we show on three case studies that it can still provide good approximation even for low molecule counts. Our approach enables rigorous analysis of CRNs that are not analyzable by solving the CME, but are far from the deterministic limit. Moreover, it can be used for a fast approximate stochastic characterization of a CRN. More... »

PAGES

64-76

Book

TITLE

Computational Methods in Systems Biology

ISBN

978-3-319-23400-7
978-3-319-23401-4

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/978-3-319-23401-4_7

DOI

http://dx.doi.org/10.1007/978-3-319-23401-4_7

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1007406060


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/01", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Mathematical Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0104", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Statistics", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Department of Computer Science, University of Oxford, Oxford, UK", 
          "id": "http://www.grid.ac/institutes/grid.4991.5", 
          "name": [
            "Microsoft Research, Cambridge, UK", 
            "Department of Computer Science, University of Oxford, Oxford, UK"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Cardelli", 
        "givenName": "Luca", 
        "id": "sg:person.013522516217.56", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013522516217.56"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Department of Computer Science, University of Oxford, Oxford, UK", 
          "id": "http://www.grid.ac/institutes/grid.4991.5", 
          "name": [
            "Department of Computer Science, University of Oxford, Oxford, UK"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Kwiatkowska", 
        "givenName": "Marta", 
        "id": "sg:person.011375012273.39", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011375012273.39"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Department of Computer Science, University of Oxford, Oxford, UK", 
          "id": "http://www.grid.ac/institutes/grid.4991.5", 
          "name": [
            "Department of Computer Science, University of Oxford, Oxford, UK"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Laurenti", 
        "givenName": "Luca", 
        "id": "sg:person.011532541500.46", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011532541500.46"
        ], 
        "type": "Person"
      }
    ], 
    "datePublished": "2015-09-02", 
    "datePublishedReg": "2015-09-02", 
    "description": "Stochastic evolution of Chemical Reactions Networks (CRNs) over time is usually analysed through solving the Chemical Master Equation (CME) or performing extensive simulations. Analysing stochasticity is often needed, particularly when some molecules occur in low numbers. Unfortunately, both approaches become infeasible if the system is complex and/or it cannot be ensured that initial populations are small. We develop a probabilistic logic for CRNs that enables stochastic analysis of the evolution of populations of molecular species. We present an approximate model checking algorithm based on the Linear Noise Approximation (LNA) of the CME, whose computational complexity is independent of the population size of each species and polynomial in the number of different species. The algorithm requires the solution of first order polynomial differential equations. We prove that our approach is valid for any CRN close enough to the thermodynamical limit. However, we show on three case studies that it can still provide good approximation even for low molecule counts. Our approach enables rigorous analysis of CRNs that are not analyzable by solving the CME, but are far from the deterministic limit. Moreover, it can be used for a fast approximate stochastic characterization of a CRN.", 
    "editor": [
      {
        "familyName": "Roux", 
        "givenName": "Olivier", 
        "type": "Person"
      }, 
      {
        "familyName": "Bourdon", 
        "givenName": "J\u00e9r\u00e9mie", 
        "type": "Person"
      }
    ], 
    "genre": "chapter", 
    "id": "sg:pub.10.1007/978-3-319-23401-4_7", 
    "inLanguage": "en", 
    "isAccessibleForFree": true, 
    "isPartOf": {
      "isbn": [
        "978-3-319-23400-7", 
        "978-3-319-23401-4"
      ], 
      "name": "Computational Methods in Systems Biology", 
      "type": "Book"
    }, 
    "keywords": [
      "chemical master equation", 
      "linear noise approximation", 
      "chemical reaction networks", 
      "noise approximation", 
      "stochastic analysis", 
      "polynomial differential equations", 
      "low molecule counts", 
      "reaction networks", 
      "differential equations", 
      "stochastic evolution", 
      "deterministic limit", 
      "molecule counts", 
      "master equation", 
      "stochastic characterization", 
      "approximate model", 
      "thermodynamical limit", 
      "computational complexity", 
      "good approximation", 
      "rigorous analysis", 
      "approximation", 
      "extensive simulations", 
      "initial population", 
      "equations", 
      "evolution of populations", 
      "algorithm", 
      "stochasticity", 
      "polynomials", 
      "probabilistic logic", 
      "network", 
      "approach", 
      "population size", 
      "solution", 
      "simulations", 
      "complexity", 
      "case study", 
      "model", 
      "number", 
      "limit", 
      "system", 
      "analysis", 
      "logic", 
      "evolution", 
      "low number", 
      "time", 
      "size", 
      "molecular species", 
      "characterization", 
      "population", 
      "counts", 
      "study", 
      "different species", 
      "species", 
      "molecules", 
      "first order polynomial differential equations", 
      "order polynomial differential equations", 
      "fast approximate stochastic characterization", 
      "approximate stochastic characterization"
    ], 
    "name": "Stochastic Analysis of Chemical Reaction Networks Using Linear Noise Approximation", 
    "pagination": "64-76", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1007406060"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/978-3-319-23401-4_7"
        ]
      }
    ], 
    "publisher": {
      "name": "Springer Nature", 
      "type": "Organisation"
    }, 
    "sameAs": [
      "https://doi.org/10.1007/978-3-319-23401-4_7", 
      "https://app.dimensions.ai/details/publication/pub.1007406060"
    ], 
    "sdDataset": "chapters", 
    "sdDatePublished": "2022-01-01T19:22", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20220101/entities/gbq_results/chapter/chapter_399.jsonl", 
    "type": "Chapter", 
    "url": "https://doi.org/10.1007/978-3-319-23401-4_7"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/978-3-319-23401-4_7'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/978-3-319-23401-4_7'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/978-3-319-23401-4_7'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/978-3-319-23401-4_7'


 

This table displays all metadata directly associated to this object as RDF triples.

137 TRIPLES      23 PREDICATES      82 URIs      75 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/978-3-319-23401-4_7 schema:about anzsrc-for:01
2 anzsrc-for:0104
3 schema:author N089f6afd35134272973bf0a29e9c37f6
4 schema:datePublished 2015-09-02
5 schema:datePublishedReg 2015-09-02
6 schema:description Stochastic evolution of Chemical Reactions Networks (CRNs) over time is usually analysed through solving the Chemical Master Equation (CME) or performing extensive simulations. Analysing stochasticity is often needed, particularly when some molecules occur in low numbers. Unfortunately, both approaches become infeasible if the system is complex and/or it cannot be ensured that initial populations are small. We develop a probabilistic logic for CRNs that enables stochastic analysis of the evolution of populations of molecular species. We present an approximate model checking algorithm based on the Linear Noise Approximation (LNA) of the CME, whose computational complexity is independent of the population size of each species and polynomial in the number of different species. The algorithm requires the solution of first order polynomial differential equations. We prove that our approach is valid for any CRN close enough to the thermodynamical limit. However, we show on three case studies that it can still provide good approximation even for low molecule counts. Our approach enables rigorous analysis of CRNs that are not analyzable by solving the CME, but are far from the deterministic limit. Moreover, it can be used for a fast approximate stochastic characterization of a CRN.
7 schema:editor N2b6140de45bb4b1c940ca5c568442b67
8 schema:genre chapter
9 schema:inLanguage en
10 schema:isAccessibleForFree true
11 schema:isPartOf Ndc8c7f5afa9544b5bcec8301dbd509d9
12 schema:keywords algorithm
13 analysis
14 approach
15 approximate model
16 approximate stochastic characterization
17 approximation
18 case study
19 characterization
20 chemical master equation
21 chemical reaction networks
22 complexity
23 computational complexity
24 counts
25 deterministic limit
26 different species
27 differential equations
28 equations
29 evolution
30 evolution of populations
31 extensive simulations
32 fast approximate stochastic characterization
33 first order polynomial differential equations
34 good approximation
35 initial population
36 limit
37 linear noise approximation
38 logic
39 low molecule counts
40 low number
41 master equation
42 model
43 molecular species
44 molecule counts
45 molecules
46 network
47 noise approximation
48 number
49 order polynomial differential equations
50 polynomial differential equations
51 polynomials
52 population
53 population size
54 probabilistic logic
55 reaction networks
56 rigorous analysis
57 simulations
58 size
59 solution
60 species
61 stochastic analysis
62 stochastic characterization
63 stochastic evolution
64 stochasticity
65 study
66 system
67 thermodynamical limit
68 time
69 schema:name Stochastic Analysis of Chemical Reaction Networks Using Linear Noise Approximation
70 schema:pagination 64-76
71 schema:productId N04a8dd12cc5f4a57a20cb75d6cdd2c32
72 N698b3c917aae441e8f2e813b154b4581
73 schema:publisher Nb24f2a222dd24891aad035e1e4a43334
74 schema:sameAs https://app.dimensions.ai/details/publication/pub.1007406060
75 https://doi.org/10.1007/978-3-319-23401-4_7
76 schema:sdDatePublished 2022-01-01T19:22
77 schema:sdLicense https://scigraph.springernature.com/explorer/license/
78 schema:sdPublisher Na9aa833585e443e990a4cfac35696c03
79 schema:url https://doi.org/10.1007/978-3-319-23401-4_7
80 sgo:license sg:explorer/license/
81 sgo:sdDataset chapters
82 rdf:type schema:Chapter
83 N04a8dd12cc5f4a57a20cb75d6cdd2c32 schema:name dimensions_id
84 schema:value pub.1007406060
85 rdf:type schema:PropertyValue
86 N063fdb5fc3334363b20130844c9ccab7 rdf:first sg:person.011375012273.39
87 rdf:rest N16dae2f95b5742e3947ff181cac1d32f
88 N089f6afd35134272973bf0a29e9c37f6 rdf:first sg:person.013522516217.56
89 rdf:rest N063fdb5fc3334363b20130844c9ccab7
90 N16dae2f95b5742e3947ff181cac1d32f rdf:first sg:person.011532541500.46
91 rdf:rest rdf:nil
92 N2b6140de45bb4b1c940ca5c568442b67 rdf:first N61b09f9ceab34d51b82d0178f5465610
93 rdf:rest Nd83d68e1a7204ab1a19c22bad967a13d
94 N39262669756a46c3b69bc8ab9b99d38b schema:familyName Bourdon
95 schema:givenName Jérémie
96 rdf:type schema:Person
97 N61b09f9ceab34d51b82d0178f5465610 schema:familyName Roux
98 schema:givenName Olivier
99 rdf:type schema:Person
100 N698b3c917aae441e8f2e813b154b4581 schema:name doi
101 schema:value 10.1007/978-3-319-23401-4_7
102 rdf:type schema:PropertyValue
103 Na9aa833585e443e990a4cfac35696c03 schema:name Springer Nature - SN SciGraph project
104 rdf:type schema:Organization
105 Nb24f2a222dd24891aad035e1e4a43334 schema:name Springer Nature
106 rdf:type schema:Organisation
107 Nd83d68e1a7204ab1a19c22bad967a13d rdf:first N39262669756a46c3b69bc8ab9b99d38b
108 rdf:rest rdf:nil
109 Ndc8c7f5afa9544b5bcec8301dbd509d9 schema:isbn 978-3-319-23400-7
110 978-3-319-23401-4
111 schema:name Computational Methods in Systems Biology
112 rdf:type schema:Book
113 anzsrc-for:01 schema:inDefinedTermSet anzsrc-for:
114 schema:name Mathematical Sciences
115 rdf:type schema:DefinedTerm
116 anzsrc-for:0104 schema:inDefinedTermSet anzsrc-for:
117 schema:name Statistics
118 rdf:type schema:DefinedTerm
119 sg:person.011375012273.39 schema:affiliation grid-institutes:grid.4991.5
120 schema:familyName Kwiatkowska
121 schema:givenName Marta
122 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011375012273.39
123 rdf:type schema:Person
124 sg:person.011532541500.46 schema:affiliation grid-institutes:grid.4991.5
125 schema:familyName Laurenti
126 schema:givenName Luca
127 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011532541500.46
128 rdf:type schema:Person
129 sg:person.013522516217.56 schema:affiliation grid-institutes:grid.4991.5
130 schema:familyName Cardelli
131 schema:givenName Luca
132 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013522516217.56
133 rdf:type schema:Person
134 grid-institutes:grid.4991.5 schema:alternateName Department of Computer Science, University of Oxford, Oxford, UK
135 schema:name Department of Computer Science, University of Oxford, Oxford, UK
136 Microsoft Research, Cambridge, UK
137 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...