Linear Optimisation, Duality: Zero-Sum Games View Full Text


Ontology type: schema:Chapter     


Chapter Info

DATE

2016

AUTHORS

Wolfgang Eichhorn , Winfried Gleißner

ABSTRACT

Here we deal again with linear optimisation, but we tackle more complicated problems than in Chap. 2 For this we use the method of steepest ascent and the simplex algorithm, which allow us to solve problems in more than two or three dimensions. This is followed by the notion of duality in linear optimisation, which is useful, among others, in the theory of two-person zero-sum games. It gives us the occasion to have an insight into that theory. More... »

PAGES

177-207

Book

TITLE

Mathematics and Methodology for Economics

ISBN

978-3-319-23352-9
978-3-319-23353-6

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/978-3-319-23353-6_5

DOI

http://dx.doi.org/10.1007/978-3-319-23353-6_5

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1002792926


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0103", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Numerical and Computational Mathematics", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/01", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Mathematical Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Karlsruhe Institute of Technology", 
          "id": "https://www.grid.ac/institutes/grid.7892.4", 
          "name": [
            "Karlsruhe Institute of Technology (KIT)"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Eichhorn", 
        "givenName": "Wolfgang", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of Applied Sciences Landshut", 
          "id": "https://www.grid.ac/institutes/grid.449759.2", 
          "name": [
            "University of Applied Sciences Landshut"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Glei\u00dfner", 
        "givenName": "Winfried", 
        "type": "Person"
      }
    ], 
    "datePublished": "2016", 
    "datePublishedReg": "2016-01-01", 
    "description": "Here we deal again with linear optimisation, but we tackle more complicated problems than in Chap.\u20092 For this we use the method of steepest ascent and the simplex algorithm, which allow us to solve problems in more than two or three dimensions. This is followed by the notion of duality in linear optimisation, which is useful, among others, in the theory of two-person zero-sum games. It gives us the occasion to have an insight into that theory.", 
    "genre": "chapter", 
    "id": "sg:pub.10.1007/978-3-319-23353-6_5", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": {
      "isbn": [
        "978-3-319-23352-9", 
        "978-3-319-23353-6"
      ], 
      "name": "Mathematics and Methodology for Economics", 
      "type": "Book"
    }, 
    "name": "Linear Optimisation, Duality: Zero-Sum Games", 
    "pagination": "177-207", 
    "productId": [
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/978-3-319-23353-6_5"
        ]
      }, 
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "0d4cc8a3290609d63a4f42c5edf0f5e7c7a1a7c019eea03b8027c5508ebc2ce5"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1002792926"
        ]
      }
    ], 
    "publisher": {
      "location": "Cham", 
      "name": "Springer International Publishing", 
      "type": "Organisation"
    }, 
    "sameAs": [
      "https://doi.org/10.1007/978-3-319-23353-6_5", 
      "https://app.dimensions.ai/details/publication/pub.1002792926"
    ], 
    "sdDataset": "chapters", 
    "sdDatePublished": "2019-04-15T22:39", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8695_00000004.jsonl", 
    "type": "Chapter", 
    "url": "http://link.springer.com/10.1007/978-3-319-23353-6_5"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/978-3-319-23353-6_5'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/978-3-319-23353-6_5'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/978-3-319-23353-6_5'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/978-3-319-23353-6_5'


 

This table displays all metadata directly associated to this object as RDF triples.

67 TRIPLES      21 PREDICATES      26 URIs      19 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/978-3-319-23353-6_5 schema:about anzsrc-for:01
2 anzsrc-for:0103
3 schema:author Ne9fb354722b741a58253041915795d76
4 schema:datePublished 2016
5 schema:datePublishedReg 2016-01-01
6 schema:description Here we deal again with linear optimisation, but we tackle more complicated problems than in Chap. 2 For this we use the method of steepest ascent and the simplex algorithm, which allow us to solve problems in more than two or three dimensions. This is followed by the notion of duality in linear optimisation, which is useful, among others, in the theory of two-person zero-sum games. It gives us the occasion to have an insight into that theory.
7 schema:genre chapter
8 schema:inLanguage en
9 schema:isAccessibleForFree false
10 schema:isPartOf N462f4ef40b734ebdb92bb4c22620ae5b
11 schema:name Linear Optimisation, Duality: Zero-Sum Games
12 schema:pagination 177-207
13 schema:productId N1e9d602a2bf34d0d92615ab9e928f730
14 Nbd9959397c2f42d2afc1d4a102fd5411
15 Nd9c2a655420047dbb1654ec6ab95338f
16 schema:publisher Nf4291044ca58408abf2a4768487ed8b4
17 schema:sameAs https://app.dimensions.ai/details/publication/pub.1002792926
18 https://doi.org/10.1007/978-3-319-23353-6_5
19 schema:sdDatePublished 2019-04-15T22:39
20 schema:sdLicense https://scigraph.springernature.com/explorer/license/
21 schema:sdPublisher N4ee55272b8144d9ba95acb249d126efa
22 schema:url http://link.springer.com/10.1007/978-3-319-23353-6_5
23 sgo:license sg:explorer/license/
24 sgo:sdDataset chapters
25 rdf:type schema:Chapter
26 N019a1d490cba409ea0a9e72507dd953c schema:affiliation https://www.grid.ac/institutes/grid.449759.2
27 schema:familyName Gleißner
28 schema:givenName Winfried
29 rdf:type schema:Person
30 N1e9d602a2bf34d0d92615ab9e928f730 schema:name doi
31 schema:value 10.1007/978-3-319-23353-6_5
32 rdf:type schema:PropertyValue
33 N462f4ef40b734ebdb92bb4c22620ae5b schema:isbn 978-3-319-23352-9
34 978-3-319-23353-6
35 schema:name Mathematics and Methodology for Economics
36 rdf:type schema:Book
37 N48cf2660b18b4bfe9ef97abd4591ad5d rdf:first N019a1d490cba409ea0a9e72507dd953c
38 rdf:rest rdf:nil
39 N4ee55272b8144d9ba95acb249d126efa schema:name Springer Nature - SN SciGraph project
40 rdf:type schema:Organization
41 Nbd9959397c2f42d2afc1d4a102fd5411 schema:name dimensions_id
42 schema:value pub.1002792926
43 rdf:type schema:PropertyValue
44 Nd9c2a655420047dbb1654ec6ab95338f schema:name readcube_id
45 schema:value 0d4cc8a3290609d63a4f42c5edf0f5e7c7a1a7c019eea03b8027c5508ebc2ce5
46 rdf:type schema:PropertyValue
47 Ndee4f9dd50c747879dc00ae1129620f7 schema:affiliation https://www.grid.ac/institutes/grid.7892.4
48 schema:familyName Eichhorn
49 schema:givenName Wolfgang
50 rdf:type schema:Person
51 Ne9fb354722b741a58253041915795d76 rdf:first Ndee4f9dd50c747879dc00ae1129620f7
52 rdf:rest N48cf2660b18b4bfe9ef97abd4591ad5d
53 Nf4291044ca58408abf2a4768487ed8b4 schema:location Cham
54 schema:name Springer International Publishing
55 rdf:type schema:Organisation
56 anzsrc-for:01 schema:inDefinedTermSet anzsrc-for:
57 schema:name Mathematical Sciences
58 rdf:type schema:DefinedTerm
59 anzsrc-for:0103 schema:inDefinedTermSet anzsrc-for:
60 schema:name Numerical and Computational Mathematics
61 rdf:type schema:DefinedTerm
62 https://www.grid.ac/institutes/grid.449759.2 schema:alternateName University of Applied Sciences Landshut
63 schema:name University of Applied Sciences Landshut
64 rdf:type schema:Organization
65 https://www.grid.ac/institutes/grid.7892.4 schema:alternateName Karlsruhe Institute of Technology
66 schema:name Karlsruhe Institute of Technology (KIT)
67 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...