Differential Equations View Full Text


Ontology type: schema:Chapter     


Chapter Info

DATE

2016

AUTHORS

Wolfgang Eichhorn , Winfried Gleißner

ABSTRACT

In this chapter we deal with differential equations. After defining differential equations we proceed with first order linear differential equations but we also discuss some nonlinear important examples: the Bernoulli and the Riccati equations. The latter is used to investigate the saturation of markets, the logistic growth. As linear differential equations of second order are very important in mathematical modelling they are discussed in full detail. At last we deal with a ubiquitous model in economics and biology the predator-prey model and the Lotka-Volterra differential equations, whose solutions are based on the Poincaré-Bendixson theorem. More... »

PAGES

535-563

Book

TITLE

Mathematics and Methodology for Economics

ISBN

978-3-319-23352-9
978-3-319-23353-6

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/978-3-319-23353-6_11

DOI

http://dx.doi.org/10.1007/978-3-319-23353-6_11

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1030370171


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0102", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Applied Mathematics", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/01", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Mathematical Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Karlsruhe Institute of Technology", 
          "id": "https://www.grid.ac/institutes/grid.7892.4", 
          "name": [
            "Karlsruhe Institute of Technology (KIT)"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Eichhorn", 
        "givenName": "Wolfgang", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of Applied Sciences Landshut", 
          "id": "https://www.grid.ac/institutes/grid.449759.2", 
          "name": [
            "University of Applied Sciences Landshut"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Glei\u00dfner", 
        "givenName": "Winfried", 
        "type": "Person"
      }
    ], 
    "datePublished": "2016", 
    "datePublishedReg": "2016-01-01", 
    "description": "In this chapter we deal with differential equations. After defining differential equations we proceed with first order linear differential equations but we also discuss some nonlinear important examples: the Bernoulli and the Riccati equations. The latter is used to investigate the saturation of markets, the logistic growth. As linear differential equations of second order are very important in mathematical modelling they are discussed in full detail. At last we deal with a ubiquitous model in economics and biology the predator-prey model and the Lotka-Volterra differential equations, whose solutions are based on the Poincar\u00e9-Bendixson theorem.", 
    "genre": "chapter", 
    "id": "sg:pub.10.1007/978-3-319-23353-6_11", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": {
      "isbn": [
        "978-3-319-23352-9", 
        "978-3-319-23353-6"
      ], 
      "name": "Mathematics and Methodology for Economics", 
      "type": "Book"
    }, 
    "name": "Differential Equations", 
    "pagination": "535-563", 
    "productId": [
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/978-3-319-23353-6_11"
        ]
      }, 
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "90ad9ffe3a20c6d879c5940536a448bb39b2ae0c0d000aeeeabcf3a91d08c5df"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1030370171"
        ]
      }
    ], 
    "publisher": {
      "location": "Cham", 
      "name": "Springer International Publishing", 
      "type": "Organisation"
    }, 
    "sameAs": [
      "https://doi.org/10.1007/978-3-319-23353-6_11", 
      "https://app.dimensions.ai/details/publication/pub.1030370171"
    ], 
    "sdDataset": "chapters", 
    "sdDatePublished": "2019-04-15T17:01", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8678_00000052.jsonl", 
    "type": "Chapter", 
    "url": "http://link.springer.com/10.1007/978-3-319-23353-6_11"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/978-3-319-23353-6_11'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/978-3-319-23353-6_11'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/978-3-319-23353-6_11'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/978-3-319-23353-6_11'


 

This table displays all metadata directly associated to this object as RDF triples.

67 TRIPLES      21 PREDICATES      26 URIs      19 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/978-3-319-23353-6_11 schema:about anzsrc-for:01
2 anzsrc-for:0102
3 schema:author N37ba4266c445452fbcb562b158fa3df8
4 schema:datePublished 2016
5 schema:datePublishedReg 2016-01-01
6 schema:description In this chapter we deal with differential equations. After defining differential equations we proceed with first order linear differential equations but we also discuss some nonlinear important examples: the Bernoulli and the Riccati equations. The latter is used to investigate the saturation of markets, the logistic growth. As linear differential equations of second order are very important in mathematical modelling they are discussed in full detail. At last we deal with a ubiquitous model in economics and biology the predator-prey model and the Lotka-Volterra differential equations, whose solutions are based on the Poincaré-Bendixson theorem.
7 schema:genre chapter
8 schema:inLanguage en
9 schema:isAccessibleForFree false
10 schema:isPartOf N7484f48af1704f38b441b1c599a7ba58
11 schema:name Differential Equations
12 schema:pagination 535-563
13 schema:productId N779aa31f5b194d77baa25c10b137705f
14 Ne35947659983414baab3e7a91d76476c
15 Nfcc7b4daac554cd58e89931794c4ad67
16 schema:publisher N20aca2aa22284b1fbca73ef7886a922d
17 schema:sameAs https://app.dimensions.ai/details/publication/pub.1030370171
18 https://doi.org/10.1007/978-3-319-23353-6_11
19 schema:sdDatePublished 2019-04-15T17:01
20 schema:sdLicense https://scigraph.springernature.com/explorer/license/
21 schema:sdPublisher N7f770cd5e17747faaf3bacd2633b628c
22 schema:url http://link.springer.com/10.1007/978-3-319-23353-6_11
23 sgo:license sg:explorer/license/
24 sgo:sdDataset chapters
25 rdf:type schema:Chapter
26 N018f436f67de4f7e80963ee166f23f36 schema:affiliation https://www.grid.ac/institutes/grid.449759.2
27 schema:familyName Gleißner
28 schema:givenName Winfried
29 rdf:type schema:Person
30 N20aca2aa22284b1fbca73ef7886a922d schema:location Cham
31 schema:name Springer International Publishing
32 rdf:type schema:Organisation
33 N37ba4266c445452fbcb562b158fa3df8 rdf:first N7fa9ec1cb00243c0961310a14fc0e142
34 rdf:rest N5a0104c2e92e410192a84733171760fd
35 N5a0104c2e92e410192a84733171760fd rdf:first N018f436f67de4f7e80963ee166f23f36
36 rdf:rest rdf:nil
37 N7484f48af1704f38b441b1c599a7ba58 schema:isbn 978-3-319-23352-9
38 978-3-319-23353-6
39 schema:name Mathematics and Methodology for Economics
40 rdf:type schema:Book
41 N779aa31f5b194d77baa25c10b137705f schema:name readcube_id
42 schema:value 90ad9ffe3a20c6d879c5940536a448bb39b2ae0c0d000aeeeabcf3a91d08c5df
43 rdf:type schema:PropertyValue
44 N7f770cd5e17747faaf3bacd2633b628c schema:name Springer Nature - SN SciGraph project
45 rdf:type schema:Organization
46 N7fa9ec1cb00243c0961310a14fc0e142 schema:affiliation https://www.grid.ac/institutes/grid.7892.4
47 schema:familyName Eichhorn
48 schema:givenName Wolfgang
49 rdf:type schema:Person
50 Ne35947659983414baab3e7a91d76476c schema:name doi
51 schema:value 10.1007/978-3-319-23353-6_11
52 rdf:type schema:PropertyValue
53 Nfcc7b4daac554cd58e89931794c4ad67 schema:name dimensions_id
54 schema:value pub.1030370171
55 rdf:type schema:PropertyValue
56 anzsrc-for:01 schema:inDefinedTermSet anzsrc-for:
57 schema:name Mathematical Sciences
58 rdf:type schema:DefinedTerm
59 anzsrc-for:0102 schema:inDefinedTermSet anzsrc-for:
60 schema:name Applied Mathematics
61 rdf:type schema:DefinedTerm
62 https://www.grid.ac/institutes/grid.449759.2 schema:alternateName University of Applied Sciences Landshut
63 schema:name University of Applied Sciences Landshut
64 rdf:type schema:Organization
65 https://www.grid.ac/institutes/grid.7892.4 schema:alternateName Karlsruhe Institute of Technology
66 schema:name Karlsruhe Institute of Technology (KIT)
67 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...