MANGO - Mobile Augmented Reality with Functional Eating Guidance and Food Awareness View Full Text


Ontology type: schema:Chapter     


Chapter Info

DATE

2015-08-21

AUTHORS

Georg Waltner , Michael Schwarz , Stefan Ladstätter , Anna Weber , Patrick Luley , Horst Bischof , Meinrad Lindschinger , Irene Schmid , Lucas Paletta

ABSTRACT

The prevention of cardiovascular diseases becomes more and more important, as malnutrition accompanies today’s fast moving society. While most people know the importance of adequate nutrition, information on advantageous food is often not at hand, such as in daily activities. Decision making on individual dietary management is closely linked to the food shopping decision. Since food shopping often requires fast decision making, due to stressful and crowded situations, the user needs a meaningful assistance, with clear and rapidly available associations from food items to dietary recommendations. This paper presents first results of the Austrian project (MANGO) which develops mobile assistance for instant, situated information access via Augmented Reality (AR) functionality to support the user during everyday grocery shopping. Within a modern diet - the functional eating concept - the user is advised which fruits and vegetables to buy according to his individual profile. This specific oxidative stress profile is created through a short in-app survey. Using a built-in image recognition system, the application automatically classifies video captured food using machine learning and computer vision methodology, such as Random Forests classification and multiple color feature spaces. The user can decide to display additional nutrition information along with alternative proposals. We demonstrate, that the application is able to recognize food classes in real-time, under real world shopping conditions, and associates dietary recommendations using situated AR assistance. More... »

PAGES

425-432

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/978-3-319-23222-5_52

DOI

http://dx.doi.org/10.1007/978-3-319-23222-5_52

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1018389987


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/08", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Information and Computing Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/11", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Medical and Health Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0801", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Artificial Intelligence and Image Processing", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/1111", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Nutrition and Dietetics", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Graz University of Technology, Graz, Austria", 
          "id": "http://www.grid.ac/institutes/grid.410413.3", 
          "name": [
            "Graz University of Technology, Graz, Austria"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Waltner", 
        "givenName": "Georg", 
        "id": "sg:person.010252340713.67", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010252340713.67"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "JOANNEUM RESEARCH Forschungsgesellschaft MbH, Graz, Austria", 
          "id": "http://www.grid.ac/institutes/grid.8684.2", 
          "name": [
            "JOANNEUM RESEARCH Forschungsgesellschaft MbH, Graz, Austria"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Schwarz", 
        "givenName": "Michael", 
        "id": "sg:person.012612265217.38", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012612265217.38"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "JOANNEUM RESEARCH Forschungsgesellschaft MbH, Graz, Austria", 
          "id": "http://www.grid.ac/institutes/grid.8684.2", 
          "name": [
            "JOANNEUM RESEARCH Forschungsgesellschaft MbH, Graz, Austria"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Ladst\u00e4tter", 
        "givenName": "Stefan", 
        "id": "sg:person.011265437417.84", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011265437417.84"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "JOANNEUM RESEARCH Forschungsgesellschaft MbH, Graz, Austria", 
          "id": "http://www.grid.ac/institutes/grid.8684.2", 
          "name": [
            "JOANNEUM RESEARCH Forschungsgesellschaft MbH, Graz, Austria"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Weber", 
        "givenName": "Anna", 
        "id": "sg:person.013720775264.81", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013720775264.81"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "JOANNEUM RESEARCH Forschungsgesellschaft MbH, Graz, Austria", 
          "id": "http://www.grid.ac/institutes/grid.8684.2", 
          "name": [
            "JOANNEUM RESEARCH Forschungsgesellschaft MbH, Graz, Austria"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Luley", 
        "givenName": "Patrick", 
        "id": "sg:person.014516355664.17", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014516355664.17"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Graz University of Technology, Graz, Austria", 
          "id": "http://www.grid.ac/institutes/grid.410413.3", 
          "name": [
            "Graz University of Technology, Graz, Austria"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Bischof", 
        "givenName": "Horst", 
        "id": "sg:person.013002347027.27", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013002347027.27"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Institute for Nutritional and Metabolic Diseases, Schwarzl Outpatient Clinic, Lassnitzh\u00f6he, Austria", 
          "id": "http://www.grid.ac/institutes/None", 
          "name": [
            "Institute for Nutritional and Metabolic Diseases, Schwarzl Outpatient Clinic, Lassnitzh\u00f6he, Austria"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Lindschinger", 
        "givenName": "Meinrad", 
        "id": "sg:person.01266646267.63", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01266646267.63"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Institute for Nutritional and Metabolic Diseases, Schwarzl Outpatient Clinic, Lassnitzh\u00f6he, Austria", 
          "id": "http://www.grid.ac/institutes/None", 
          "name": [
            "Institute for Nutritional and Metabolic Diseases, Schwarzl Outpatient Clinic, Lassnitzh\u00f6he, Austria"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Schmid", 
        "givenName": "Irene", 
        "id": "sg:person.016706677264.03", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016706677264.03"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "JOANNEUM RESEARCH Forschungsgesellschaft MbH, Graz, Austria", 
          "id": "http://www.grid.ac/institutes/grid.8684.2", 
          "name": [
            "JOANNEUM RESEARCH Forschungsgesellschaft MbH, Graz, Austria"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Paletta", 
        "givenName": "Lucas", 
        "id": "sg:person.010060055125.29", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010060055125.29"
        ], 
        "type": "Person"
      }
    ], 
    "datePublished": "2015-08-21", 
    "datePublishedReg": "2015-08-21", 
    "description": "The prevention of cardiovascular diseases becomes more and more important, as malnutrition accompanies today\u2019s fast moving society. While most people know the importance of adequate nutrition, information on advantageous food is often not at hand, such as in daily activities. Decision making on individual dietary management is closely linked to the food shopping decision. Since food shopping often requires fast decision making, due to stressful and crowded situations, the user needs a meaningful assistance, with clear and rapidly available associations from food items to dietary recommendations. This paper presents first results of the Austrian project (MANGO) which develops mobile assistance for instant, situated information access via Augmented Reality (AR) functionality to support the user during everyday grocery shopping. Within a modern diet - the functional eating concept - the user is advised which fruits and vegetables to buy according to his individual profile. This specific oxidative stress profile is created through a short in-app survey. Using a built-in image recognition system, the application automatically classifies video captured food using machine learning and computer vision methodology, such as Random Forests classification and multiple color feature spaces. The user can decide to display additional nutrition information along with alternative proposals. We demonstrate, that the application is able to recognize food classes in real-time, under real world shopping conditions, and associates dietary recommendations using situated AR assistance.", 
    "editor": [
      {
        "familyName": "Murino", 
        "givenName": "Vittorio", 
        "type": "Person"
      }, 
      {
        "familyName": "Puppo", 
        "givenName": "Enrico", 
        "type": "Person"
      }, 
      {
        "familyName": "Sona", 
        "givenName": "Diego", 
        "type": "Person"
      }, 
      {
        "familyName": "Cristani", 
        "givenName": "Marco", 
        "type": "Person"
      }, 
      {
        "familyName": "Sansone", 
        "givenName": "Carlo", 
        "type": "Person"
      }
    ], 
    "genre": "chapter", 
    "id": "sg:pub.10.1007/978-3-319-23222-5_52", 
    "inLanguage": "en", 
    "isAccessibleForFree": false, 
    "isPartOf": {
      "isbn": [
        "978-3-319-23221-8", 
        "978-3-319-23222-5"
      ], 
      "name": "New Trends in Image Analysis and Processing -- ICIAP 2015 Workshops", 
      "type": "Book"
    }, 
    "keywords": [
      "Augmented Reality functionalities", 
      "image recognition system", 
      "computer vision methodologies", 
      "color feature space", 
      "fast decision making", 
      "reality functionality", 
      "mobile assistance", 
      "machine learning", 
      "Augmented Reality", 
      "recognition system", 
      "information access", 
      "random forest classification", 
      "feature space", 
      "AR assistance", 
      "users", 
      "app survey", 
      "crowded situations", 
      "food shopping decisions", 
      "forest classification", 
      "available associations", 
      "Austrian project", 
      "shopping decisions", 
      "decision making", 
      "meaningful assistance", 
      "video", 
      "information", 
      "shopping", 
      "applications", 
      "functionality", 
      "assistance", 
      "decisions", 
      "learning", 
      "first results", 
      "grocery shopping", 
      "classification", 
      "food classes", 
      "food awareness", 
      "daily activities", 
      "access", 
      "proposal", 
      "instant", 
      "shopping conditions", 
      "project", 
      "reality", 
      "system", 
      "methodology", 
      "individual profiles", 
      "space", 
      "concept", 
      "today", 
      "making", 
      "most people", 
      "recommendations", 
      "situation", 
      "dietary recommendations", 
      "alternative proposals", 
      "management", 
      "class", 
      "items", 
      "guidance", 
      "oxidative stress profile", 
      "hand", 
      "dietary management", 
      "cardiovascular disease", 
      "people", 
      "awareness", 
      "adequate nutrition", 
      "results", 
      "modern diet", 
      "nutrition information", 
      "food shopping", 
      "food items", 
      "importance", 
      "disease", 
      "prevention", 
      "survey", 
      "food", 
      "diet", 
      "association", 
      "nutrition", 
      "society", 
      "profile", 
      "vegetables", 
      "activity", 
      "conditions", 
      "fruit", 
      "stress profiles", 
      "paper", 
      "malnutrition accompanies today\u2019s", 
      "accompanies today\u2019s", 
      "advantageous food", 
      "individual dietary management", 
      "everyday grocery shopping", 
      "specific oxidative stress profile", 
      "vision methodology", 
      "multiple color feature spaces", 
      "additional nutrition information", 
      "real world shopping conditions", 
      "world shopping conditions", 
      "MANGO - Mobile Augmented Reality", 
      "Functional Eating Guidance", 
      "Eating Guidance"
    ], 
    "name": "MANGO - Mobile Augmented Reality with Functional Eating Guidance and Food Awareness", 
    "pagination": "425-432", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1018389987"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/978-3-319-23222-5_52"
        ]
      }
    ], 
    "publisher": {
      "name": "Springer Nature", 
      "type": "Organisation"
    }, 
    "sameAs": [
      "https://doi.org/10.1007/978-3-319-23222-5_52", 
      "https://app.dimensions.ai/details/publication/pub.1018389987"
    ], 
    "sdDataset": "chapters", 
    "sdDatePublished": "2022-01-01T19:25", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20220101/entities/gbq_results/chapter/chapter_442.jsonl", 
    "type": "Chapter", 
    "url": "https://doi.org/10.1007/978-3-319-23222-5_52"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/978-3-319-23222-5_52'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/978-3-319-23222-5_52'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/978-3-319-23222-5_52'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/978-3-319-23222-5_52'


 

This table displays all metadata directly associated to this object as RDF triples.

252 TRIPLES      23 PREDICATES      129 URIs      120 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/978-3-319-23222-5_52 schema:about anzsrc-for:08
2 anzsrc-for:0801
3 anzsrc-for:11
4 anzsrc-for:1111
5 schema:author N4c1ebcbdf18f44548c8d3885e8bd1e87
6 schema:datePublished 2015-08-21
7 schema:datePublishedReg 2015-08-21
8 schema:description The prevention of cardiovascular diseases becomes more and more important, as malnutrition accompanies today’s fast moving society. While most people know the importance of adequate nutrition, information on advantageous food is often not at hand, such as in daily activities. Decision making on individual dietary management is closely linked to the food shopping decision. Since food shopping often requires fast decision making, due to stressful and crowded situations, the user needs a meaningful assistance, with clear and rapidly available associations from food items to dietary recommendations. This paper presents first results of the Austrian project (MANGO) which develops mobile assistance for instant, situated information access via Augmented Reality (AR) functionality to support the user during everyday grocery shopping. Within a modern diet - the functional eating concept - the user is advised which fruits and vegetables to buy according to his individual profile. This specific oxidative stress profile is created through a short in-app survey. Using a built-in image recognition system, the application automatically classifies video captured food using machine learning and computer vision methodology, such as Random Forests classification and multiple color feature spaces. The user can decide to display additional nutrition information along with alternative proposals. We demonstrate, that the application is able to recognize food classes in real-time, under real world shopping conditions, and associates dietary recommendations using situated AR assistance.
9 schema:editor N6b9bf5971f8641cf84c4f183b498bc39
10 schema:genre chapter
11 schema:inLanguage en
12 schema:isAccessibleForFree false
13 schema:isPartOf N8602bc57274348c08aedc98cb82d0eca
14 schema:keywords AR assistance
15 Augmented Reality
16 Augmented Reality functionalities
17 Austrian project
18 Eating Guidance
19 Functional Eating Guidance
20 MANGO - Mobile Augmented Reality
21 access
22 accompanies today’s
23 activity
24 additional nutrition information
25 adequate nutrition
26 advantageous food
27 alternative proposals
28 app survey
29 applications
30 assistance
31 association
32 available associations
33 awareness
34 cardiovascular disease
35 class
36 classification
37 color feature space
38 computer vision methodologies
39 concept
40 conditions
41 crowded situations
42 daily activities
43 decision making
44 decisions
45 diet
46 dietary management
47 dietary recommendations
48 disease
49 everyday grocery shopping
50 fast decision making
51 feature space
52 first results
53 food
54 food awareness
55 food classes
56 food items
57 food shopping
58 food shopping decisions
59 forest classification
60 fruit
61 functionality
62 grocery shopping
63 guidance
64 hand
65 image recognition system
66 importance
67 individual dietary management
68 individual profiles
69 information
70 information access
71 instant
72 items
73 learning
74 machine learning
75 making
76 malnutrition accompanies today’s
77 management
78 meaningful assistance
79 methodology
80 mobile assistance
81 modern diet
82 most people
83 multiple color feature spaces
84 nutrition
85 nutrition information
86 oxidative stress profile
87 paper
88 people
89 prevention
90 profile
91 project
92 proposal
93 random forest classification
94 real world shopping conditions
95 reality
96 reality functionality
97 recognition system
98 recommendations
99 results
100 shopping
101 shopping conditions
102 shopping decisions
103 situation
104 society
105 space
106 specific oxidative stress profile
107 stress profiles
108 survey
109 system
110 today
111 users
112 vegetables
113 video
114 vision methodology
115 world shopping conditions
116 schema:name MANGO - Mobile Augmented Reality with Functional Eating Guidance and Food Awareness
117 schema:pagination 425-432
118 schema:productId Nb732e7637f754c8c8746b52ec5f3f560
119 Nd78a916180ff4c5f82051fdea5b2af2b
120 schema:publisher N864b8c6d3cca479088c666b72e4572cb
121 schema:sameAs https://app.dimensions.ai/details/publication/pub.1018389987
122 https://doi.org/10.1007/978-3-319-23222-5_52
123 schema:sdDatePublished 2022-01-01T19:25
124 schema:sdLicense https://scigraph.springernature.com/explorer/license/
125 schema:sdPublisher Nbbcbebe2cfe241e0bc0d2e97730fcf23
126 schema:url https://doi.org/10.1007/978-3-319-23222-5_52
127 sgo:license sg:explorer/license/
128 sgo:sdDataset chapters
129 rdf:type schema:Chapter
130 N19712eeed6f34697a3d4013be1faccec schema:familyName Murino
131 schema:givenName Vittorio
132 rdf:type schema:Person
133 N2ad2b221f6404722a9799ab92a9a31f5 rdf:first Nd23839b61fc342448a594f7b312b3c42
134 rdf:rest Nf5b6942d474a4feba814bb6de75d4b7f
135 N2f6265f792fb42bfa283c61e385ef5f2 rdf:first sg:person.010060055125.29
136 rdf:rest rdf:nil
137 N4081c099763344f79e9cfb799d1d555f rdf:first sg:person.013720775264.81
138 rdf:rest N569143bc2ccc4aca9fa8214893b39c35
139 N4c1ebcbdf18f44548c8d3885e8bd1e87 rdf:first sg:person.010252340713.67
140 rdf:rest N9a4af701d57143e7a1550820776248fc
141 N569143bc2ccc4aca9fa8214893b39c35 rdf:first sg:person.014516355664.17
142 rdf:rest N8e2fff8a58694ea59ba87bde4a1ecb09
143 N60a7ea81adae4059b3e68afd8cc35445 schema:familyName Sansone
144 schema:givenName Carlo
145 rdf:type schema:Person
146 N61f8f061d5054a74b78a9485fff953a5 rdf:first N81416654fa61409b8499b2b56cb27a3b
147 rdf:rest N2ad2b221f6404722a9799ab92a9a31f5
148 N620cda5c16914f7793b568533c74a600 rdf:first N60a7ea81adae4059b3e68afd8cc35445
149 rdf:rest rdf:nil
150 N6b9bf5971f8641cf84c4f183b498bc39 rdf:first N19712eeed6f34697a3d4013be1faccec
151 rdf:rest N61f8f061d5054a74b78a9485fff953a5
152 N81416654fa61409b8499b2b56cb27a3b schema:familyName Puppo
153 schema:givenName Enrico
154 rdf:type schema:Person
155 N8602bc57274348c08aedc98cb82d0eca schema:isbn 978-3-319-23221-8
156 978-3-319-23222-5
157 schema:name New Trends in Image Analysis and Processing -- ICIAP 2015 Workshops
158 rdf:type schema:Book
159 N864b8c6d3cca479088c666b72e4572cb schema:name Springer Nature
160 rdf:type schema:Organisation
161 N8e2fff8a58694ea59ba87bde4a1ecb09 rdf:first sg:person.013002347027.27
162 rdf:rest Ne015194cd47b436f9a5a10a16bf2f894
163 N91ac4560c22d4ad0855f6b0255f74ca4 rdf:first sg:person.016706677264.03
164 rdf:rest N2f6265f792fb42bfa283c61e385ef5f2
165 N9a4af701d57143e7a1550820776248fc rdf:first sg:person.012612265217.38
166 rdf:rest Nbad3f6bf82a64045b5bc89c91be5b19c
167 Nb732e7637f754c8c8746b52ec5f3f560 schema:name dimensions_id
168 schema:value pub.1018389987
169 rdf:type schema:PropertyValue
170 Nbad3f6bf82a64045b5bc89c91be5b19c rdf:first sg:person.011265437417.84
171 rdf:rest N4081c099763344f79e9cfb799d1d555f
172 Nbbcbebe2cfe241e0bc0d2e97730fcf23 schema:name Springer Nature - SN SciGraph project
173 rdf:type schema:Organization
174 Nd23839b61fc342448a594f7b312b3c42 schema:familyName Sona
175 schema:givenName Diego
176 rdf:type schema:Person
177 Nd78a916180ff4c5f82051fdea5b2af2b schema:name doi
178 schema:value 10.1007/978-3-319-23222-5_52
179 rdf:type schema:PropertyValue
180 Ne015194cd47b436f9a5a10a16bf2f894 rdf:first sg:person.01266646267.63
181 rdf:rest N91ac4560c22d4ad0855f6b0255f74ca4
182 Nea2610c730124aa3905cc5117139fa8d schema:familyName Cristani
183 schema:givenName Marco
184 rdf:type schema:Person
185 Nf5b6942d474a4feba814bb6de75d4b7f rdf:first Nea2610c730124aa3905cc5117139fa8d
186 rdf:rest N620cda5c16914f7793b568533c74a600
187 anzsrc-for:08 schema:inDefinedTermSet anzsrc-for:
188 schema:name Information and Computing Sciences
189 rdf:type schema:DefinedTerm
190 anzsrc-for:0801 schema:inDefinedTermSet anzsrc-for:
191 schema:name Artificial Intelligence and Image Processing
192 rdf:type schema:DefinedTerm
193 anzsrc-for:11 schema:inDefinedTermSet anzsrc-for:
194 schema:name Medical and Health Sciences
195 rdf:type schema:DefinedTerm
196 anzsrc-for:1111 schema:inDefinedTermSet anzsrc-for:
197 schema:name Nutrition and Dietetics
198 rdf:type schema:DefinedTerm
199 sg:person.010060055125.29 schema:affiliation grid-institutes:grid.8684.2
200 schema:familyName Paletta
201 schema:givenName Lucas
202 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010060055125.29
203 rdf:type schema:Person
204 sg:person.010252340713.67 schema:affiliation grid-institutes:grid.410413.3
205 schema:familyName Waltner
206 schema:givenName Georg
207 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010252340713.67
208 rdf:type schema:Person
209 sg:person.011265437417.84 schema:affiliation grid-institutes:grid.8684.2
210 schema:familyName Ladstätter
211 schema:givenName Stefan
212 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011265437417.84
213 rdf:type schema:Person
214 sg:person.012612265217.38 schema:affiliation grid-institutes:grid.8684.2
215 schema:familyName Schwarz
216 schema:givenName Michael
217 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012612265217.38
218 rdf:type schema:Person
219 sg:person.01266646267.63 schema:affiliation grid-institutes:None
220 schema:familyName Lindschinger
221 schema:givenName Meinrad
222 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01266646267.63
223 rdf:type schema:Person
224 sg:person.013002347027.27 schema:affiliation grid-institutes:grid.410413.3
225 schema:familyName Bischof
226 schema:givenName Horst
227 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013002347027.27
228 rdf:type schema:Person
229 sg:person.013720775264.81 schema:affiliation grid-institutes:grid.8684.2
230 schema:familyName Weber
231 schema:givenName Anna
232 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013720775264.81
233 rdf:type schema:Person
234 sg:person.014516355664.17 schema:affiliation grid-institutes:grid.8684.2
235 schema:familyName Luley
236 schema:givenName Patrick
237 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014516355664.17
238 rdf:type schema:Person
239 sg:person.016706677264.03 schema:affiliation grid-institutes:None
240 schema:familyName Schmid
241 schema:givenName Irene
242 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016706677264.03
243 rdf:type schema:Person
244 grid-institutes:None schema:alternateName Institute for Nutritional and Metabolic Diseases, Schwarzl Outpatient Clinic, Lassnitzhöhe, Austria
245 schema:name Institute for Nutritional and Metabolic Diseases, Schwarzl Outpatient Clinic, Lassnitzhöhe, Austria
246 rdf:type schema:Organization
247 grid-institutes:grid.410413.3 schema:alternateName Graz University of Technology, Graz, Austria
248 schema:name Graz University of Technology, Graz, Austria
249 rdf:type schema:Organization
250 grid-institutes:grid.8684.2 schema:alternateName JOANNEUM RESEARCH Forschungsgesellschaft MbH, Graz, Austria
251 schema:name JOANNEUM RESEARCH Forschungsgesellschaft MbH, Graz, Austria
252 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...