Mining Invisible Tasks in Non-free-choice Constructs View Full Text


Ontology type: schema:Chapter     


Chapter Info

DATE

2015-08-13

AUTHORS

Qinlong Guo , Lijie Wen , Jianmin Wang , Zhiqiang Yan , Philip S. Yu

ABSTRACT

The discovery of process models from event logs (i.e. process mining) has emerged as one of the crucial challenges for enabling the continuous support in the life-cycle of a process-aware information system. However, in a decade of process discovery research, the relevant algorithms are known to have strong limitations in several dimensions. Invisible task and non-free-choice construct are two important special structures in a process model. Mining invisible tasks involved in non-free-choice constructs is still one significant challenge. In this paper, we propose an algorithm named \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\alpha ^{\$}$$\end{document}. By introducing new ordering relations between tasks, \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\alpha ^{\$}$$\end{document} is able to solve this problem. \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\alpha ^{\$}$$\end{document} has been implemented as a plug-in of ProM. The experimental results show that it indeed significantly improves existing process mining techniques. More... »

PAGES

109-125

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/978-3-319-23063-4_7

DOI

http://dx.doi.org/10.1007/978-3-319-23063-4_7

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1003135479


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/08", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Information and Computing Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0801", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Artificial Intelligence and Image Processing", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "School of Software, Tsinghua University, Beijing, China", 
          "id": "http://www.grid.ac/institutes/grid.12527.33", 
          "name": [
            "School of Software, Tsinghua University, Beijing, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Guo", 
        "givenName": "Qinlong", 
        "id": "sg:person.015741144623.22", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015741144623.22"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "School of Software, Tsinghua University, Beijing, China", 
          "id": "http://www.grid.ac/institutes/grid.12527.33", 
          "name": [
            "School of Software, Tsinghua University, Beijing, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Wen", 
        "givenName": "Lijie", 
        "id": "sg:person.013640554311.55", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013640554311.55"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "School of Software, Tsinghua University, Beijing, China", 
          "id": "http://www.grid.ac/institutes/grid.12527.33", 
          "name": [
            "School of Software, Tsinghua University, Beijing, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Wang", 
        "givenName": "Jianmin", 
        "id": "sg:person.012303351315.43", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012303351315.43"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Information School, Capital University of Economics and Business, Beijing, China", 
          "id": "http://www.grid.ac/institutes/grid.411923.c", 
          "name": [
            "Information School, Capital University of Economics and Business, Beijing, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Yan", 
        "givenName": "Zhiqiang", 
        "id": "sg:person.010652652311.19", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010652652311.19"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Institue for Data Science, Tsinghua University, Beijing, China", 
          "id": "http://www.grid.ac/institutes/grid.12527.33", 
          "name": [
            "Department of Computer Science, University of Illinois at Chicago, Chicago, USA", 
            "Institue for Data Science, Tsinghua University, Beijing, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Yu", 
        "givenName": "Philip S.", 
        "id": "sg:person.011016356115.95", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011016356115.95"
        ], 
        "type": "Person"
      }
    ], 
    "datePublished": "2015-08-13", 
    "datePublishedReg": "2015-08-13", 
    "description": "The discovery of process models from event logs (i.e. process mining) has emerged as one of the crucial challenges for enabling the continuous support in the life-cycle of a process-aware information system. However, in a decade of process discovery research, the relevant algorithms are known to have strong limitations in several dimensions. Invisible task and non-free-choice construct are two important special structures in a process model. Mining invisible tasks involved in non-free-choice constructs is still one significant challenge. In this paper, we propose an algorithm named \\documentclass[12pt]{minimal}\n\t\t\t\t\\usepackage{amsmath}\n\t\t\t\t\\usepackage{wasysym}\n\t\t\t\t\\usepackage{amsfonts}\n\t\t\t\t\\usepackage{amssymb}\n\t\t\t\t\\usepackage{amsbsy}\n\t\t\t\t\\usepackage{mathrsfs}\n\t\t\t\t\\usepackage{upgreek}\n\t\t\t\t\\setlength{\\oddsidemargin}{-69pt}\n\t\t\t\t\\begin{document}$$\\alpha ^{\\$}$$\\end{document}. By introducing new ordering relations between tasks, \\documentclass[12pt]{minimal}\n\t\t\t\t\\usepackage{amsmath}\n\t\t\t\t\\usepackage{wasysym}\n\t\t\t\t\\usepackage{amsfonts}\n\t\t\t\t\\usepackage{amssymb}\n\t\t\t\t\\usepackage{amsbsy}\n\t\t\t\t\\usepackage{mathrsfs}\n\t\t\t\t\\usepackage{upgreek}\n\t\t\t\t\\setlength{\\oddsidemargin}{-69pt}\n\t\t\t\t\\begin{document}$$\\alpha ^{\\$}$$\\end{document} is able to solve this problem. \\documentclass[12pt]{minimal}\n\t\t\t\t\\usepackage{amsmath}\n\t\t\t\t\\usepackage{wasysym}\n\t\t\t\t\\usepackage{amsfonts}\n\t\t\t\t\\usepackage{amssymb}\n\t\t\t\t\\usepackage{amsbsy}\n\t\t\t\t\\usepackage{mathrsfs}\n\t\t\t\t\\usepackage{upgreek}\n\t\t\t\t\\setlength{\\oddsidemargin}{-69pt}\n\t\t\t\t\\begin{document}$$\\alpha ^{\\$}$$\\end{document} has been implemented as a plug-in of ProM. The experimental results show that it indeed significantly improves existing process mining techniques.", 
    "editor": [
      {
        "familyName": "Motahari-Nezhad", 
        "givenName": "Hamid Reza", 
        "type": "Person"
      }, 
      {
        "familyName": "Recker", 
        "givenName": "Jan", 
        "type": "Person"
      }, 
      {
        "familyName": "Weidlich", 
        "givenName": "Matthias", 
        "type": "Person"
      }
    ], 
    "genre": "chapter", 
    "id": "sg:pub.10.1007/978-3-319-23063-4_7", 
    "inLanguage": "en", 
    "isAccessibleForFree": false, 
    "isPartOf": {
      "isbn": [
        "978-3-319-23062-7", 
        "978-3-319-23063-4"
      ], 
      "name": "Business Process Management", 
      "type": "Book"
    }, 
    "keywords": [
      "invisible tasks", 
      "choice construct", 
      "process-aware information systems", 
      "process mining techniques", 
      "process model", 
      "new ordering relation", 
      "event logs", 
      "mining techniques", 
      "relevant algorithms", 
      "information systems", 
      "important special structure", 
      "crucial challenge", 
      "task", 
      "algorithm", 
      "experimental results", 
      "ordering relations", 
      "strong limitations", 
      "significant challenge", 
      "special structure", 
      "ProM.", 
      "continuous support", 
      "challenges", 
      "log", 
      "discovery research", 
      "model", 
      "system", 
      "technique", 
      "discovery", 
      "support", 
      "limitations", 
      "research", 
      "constructs", 
      "results", 
      "dimensions", 
      "decades", 
      "structure", 
      "relation", 
      "paper", 
      "problem", 
      "process discovery research"
    ], 
    "name": "Mining Invisible Tasks in Non-free-choice Constructs", 
    "pagination": "109-125", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1003135479"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/978-3-319-23063-4_7"
        ]
      }
    ], 
    "publisher": {
      "name": "Springer Nature", 
      "type": "Organisation"
    }, 
    "sameAs": [
      "https://doi.org/10.1007/978-3-319-23063-4_7", 
      "https://app.dimensions.ai/details/publication/pub.1003135479"
    ], 
    "sdDataset": "chapters", 
    "sdDatePublished": "2022-01-01T19:19", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20220101/entities/gbq_results/chapter/chapter_340.jsonl", 
    "type": "Chapter", 
    "url": "https://doi.org/10.1007/978-3-319-23063-4_7"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/978-3-319-23063-4_7'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/978-3-319-23063-4_7'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/978-3-319-23063-4_7'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/978-3-319-23063-4_7'


 

This table displays all metadata directly associated to this object as RDF triples.

144 TRIPLES      23 PREDICATES      65 URIs      58 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/978-3-319-23063-4_7 schema:about anzsrc-for:08
2 anzsrc-for:0801
3 schema:author Ne78beb0b08c54bffb68442b9008217e4
4 schema:datePublished 2015-08-13
5 schema:datePublishedReg 2015-08-13
6 schema:description The discovery of process models from event logs (i.e. process mining) has emerged as one of the crucial challenges for enabling the continuous support in the life-cycle of a process-aware information system. However, in a decade of process discovery research, the relevant algorithms are known to have strong limitations in several dimensions. Invisible task and non-free-choice construct are two important special structures in a process model. Mining invisible tasks involved in non-free-choice constructs is still one significant challenge. In this paper, we propose an algorithm named \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\alpha ^{\$}$$\end{document}. By introducing new ordering relations between tasks, \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\alpha ^{\$}$$\end{document} is able to solve this problem. \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\alpha ^{\$}$$\end{document} has been implemented as a plug-in of ProM. The experimental results show that it indeed significantly improves existing process mining techniques.
7 schema:editor N987ecf2044264f6cbf049bf74a387071
8 schema:genre chapter
9 schema:inLanguage en
10 schema:isAccessibleForFree false
11 schema:isPartOf Nf8a0357c009c422aa73232d9926bebfe
12 schema:keywords ProM.
13 algorithm
14 challenges
15 choice construct
16 constructs
17 continuous support
18 crucial challenge
19 decades
20 dimensions
21 discovery
22 discovery research
23 event logs
24 experimental results
25 important special structure
26 information systems
27 invisible tasks
28 limitations
29 log
30 mining techniques
31 model
32 new ordering relation
33 ordering relations
34 paper
35 problem
36 process discovery research
37 process mining techniques
38 process model
39 process-aware information systems
40 relation
41 relevant algorithms
42 research
43 results
44 significant challenge
45 special structure
46 strong limitations
47 structure
48 support
49 system
50 task
51 technique
52 schema:name Mining Invisible Tasks in Non-free-choice Constructs
53 schema:pagination 109-125
54 schema:productId N16b05c76f2534b8f8295b8f2a4de0353
55 N2c0950bd56274d43b6e4c372cddfe72e
56 schema:publisher Nb7a25d9f4f8b40c99850f241b2b9004c
57 schema:sameAs https://app.dimensions.ai/details/publication/pub.1003135479
58 https://doi.org/10.1007/978-3-319-23063-4_7
59 schema:sdDatePublished 2022-01-01T19:19
60 schema:sdLicense https://scigraph.springernature.com/explorer/license/
61 schema:sdPublisher N754f3334cc164c53a3fe3dc94d471575
62 schema:url https://doi.org/10.1007/978-3-319-23063-4_7
63 sgo:license sg:explorer/license/
64 sgo:sdDataset chapters
65 rdf:type schema:Chapter
66 N06654d73b8664a9d8463e11d4222e20a rdf:first sg:person.010652652311.19
67 rdf:rest Nfd77caee279b42fe918d05d1445a531f
68 N16b05c76f2534b8f8295b8f2a4de0353 schema:name doi
69 schema:value 10.1007/978-3-319-23063-4_7
70 rdf:type schema:PropertyValue
71 N177649fd17324b0aa89a516be172b1be rdf:first sg:person.013640554311.55
72 rdf:rest N695d8d1b52b947448576efed7145621a
73 N290b1112ef6343afb7051b5a75e86c3b schema:familyName Weidlich
74 schema:givenName Matthias
75 rdf:type schema:Person
76 N2c0950bd56274d43b6e4c372cddfe72e schema:name dimensions_id
77 schema:value pub.1003135479
78 rdf:type schema:PropertyValue
79 N695d8d1b52b947448576efed7145621a rdf:first sg:person.012303351315.43
80 rdf:rest N06654d73b8664a9d8463e11d4222e20a
81 N754f3334cc164c53a3fe3dc94d471575 schema:name Springer Nature - SN SciGraph project
82 rdf:type schema:Organization
83 N987ecf2044264f6cbf049bf74a387071 rdf:first Nd4625c668f12441db97268de1d96b928
84 rdf:rest Nc01351116af04c4c82df94870cc275b4
85 N98c5fd885ad64a71b0fc5390fb5f9e29 schema:familyName Recker
86 schema:givenName Jan
87 rdf:type schema:Person
88 Nb7a25d9f4f8b40c99850f241b2b9004c schema:name Springer Nature
89 rdf:type schema:Organisation
90 Nc01351116af04c4c82df94870cc275b4 rdf:first N98c5fd885ad64a71b0fc5390fb5f9e29
91 rdf:rest Nf08c9337cd06492a8f8bea9e761c288e
92 Nd4625c668f12441db97268de1d96b928 schema:familyName Motahari-Nezhad
93 schema:givenName Hamid Reza
94 rdf:type schema:Person
95 Ne78beb0b08c54bffb68442b9008217e4 rdf:first sg:person.015741144623.22
96 rdf:rest N177649fd17324b0aa89a516be172b1be
97 Nf08c9337cd06492a8f8bea9e761c288e rdf:first N290b1112ef6343afb7051b5a75e86c3b
98 rdf:rest rdf:nil
99 Nf8a0357c009c422aa73232d9926bebfe schema:isbn 978-3-319-23062-7
100 978-3-319-23063-4
101 schema:name Business Process Management
102 rdf:type schema:Book
103 Nfd77caee279b42fe918d05d1445a531f rdf:first sg:person.011016356115.95
104 rdf:rest rdf:nil
105 anzsrc-for:08 schema:inDefinedTermSet anzsrc-for:
106 schema:name Information and Computing Sciences
107 rdf:type schema:DefinedTerm
108 anzsrc-for:0801 schema:inDefinedTermSet anzsrc-for:
109 schema:name Artificial Intelligence and Image Processing
110 rdf:type schema:DefinedTerm
111 sg:person.010652652311.19 schema:affiliation grid-institutes:grid.411923.c
112 schema:familyName Yan
113 schema:givenName Zhiqiang
114 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010652652311.19
115 rdf:type schema:Person
116 sg:person.011016356115.95 schema:affiliation grid-institutes:grid.12527.33
117 schema:familyName Yu
118 schema:givenName Philip S.
119 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011016356115.95
120 rdf:type schema:Person
121 sg:person.012303351315.43 schema:affiliation grid-institutes:grid.12527.33
122 schema:familyName Wang
123 schema:givenName Jianmin
124 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012303351315.43
125 rdf:type schema:Person
126 sg:person.013640554311.55 schema:affiliation grid-institutes:grid.12527.33
127 schema:familyName Wen
128 schema:givenName Lijie
129 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013640554311.55
130 rdf:type schema:Person
131 sg:person.015741144623.22 schema:affiliation grid-institutes:grid.12527.33
132 schema:familyName Guo
133 schema:givenName Qinlong
134 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015741144623.22
135 rdf:type schema:Person
136 grid-institutes:grid.12527.33 schema:alternateName Institue for Data Science, Tsinghua University, Beijing, China
137 School of Software, Tsinghua University, Beijing, China
138 schema:name Department of Computer Science, University of Illinois at Chicago, Chicago, USA
139 Institue for Data Science, Tsinghua University, Beijing, China
140 School of Software, Tsinghua University, Beijing, China
141 rdf:type schema:Organization
142 grid-institutes:grid.411923.c schema:alternateName Information School, Capital University of Economics and Business, Beijing, China
143 schema:name Information School, Capital University of Economics and Business, Beijing, China
144 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...