2016-04-23
AUTHORSHelmut Fritzsche , Frank Klose , Christine Rehm , Zin Tun , Max Wolff , Björgvin Hjörvarsson
ABSTRACTNeutron Reflectometry (NR) is capable to determine the chemical depth profile of thin film samples from the sub-nanometer regime up to about 200 nm thickness. The high sensitivity of neutrons to hydrogen and deuterium enables NR to detect absolute hydrogen concentrations in the at.% range even in nm-thick layers. Therefore, NR is an ideal tool to study in-situ the hydrogen/deuterium absorption and desorption properties of thin films on a nanometer scale—without the need of a calibration sample. After an introduction to the NR technique and required instrumentation, this chapter provides a comprehensive overview of NR applications in various scientific areas, e.g. hydrogen absorption and desorption of Mg-based alloys and thin Nb films, electrochemical measurements on thin Zr and Ti films, and tuning of the oscillating magnetic exchange coupling in Fe/V and Fe/Nb multilayers with hydrogen. More... »
PAGES115-158
Neutron Scattering and Other Nuclear Techniques for Hydrogen in Materials
ISBN
978-3-319-22791-7
978-3-319-22792-4
http://scigraph.springernature.com/pub.10.1007/978-3-319-22792-4_5
DOIhttp://dx.doi.org/10.1007/978-3-319-22792-4_5
DIMENSIONShttps://app.dimensions.ai/details/publication/pub.1030510792
JSON-LD is the canonical representation for SciGraph data.
TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT
[
{
"@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json",
"about": [
{
"id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/09",
"inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/",
"name": "Engineering",
"type": "DefinedTerm"
},
{
"id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0912",
"inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/",
"name": "Materials Engineering",
"type": "DefinedTerm"
}
],
"author": [
{
"affiliation": {
"alternateName": "Canadian Nuclear Laboratories, K0J 1J0, Chalk River, ON, Canada",
"id": "http://www.grid.ac/institutes/grid.459406.a",
"name": [
"Canadian Nuclear Laboratories, K0J 1J0, Chalk River, ON, Canada"
],
"type": "Organization"
},
"familyName": "Fritzsche",
"givenName": "Helmut",
"id": "sg:person.011000116611.53",
"sameAs": [
"https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011000116611.53"
],
"type": "Person"
},
{
"affiliation": {
"alternateName": "Department of Physics and Materials Science, City University of Hong Kong, Hong Kong SAR, China",
"id": "http://www.grid.ac/institutes/grid.35030.35",
"name": [
"Bragg Institute, Australian Nuclear Science and Technology Organisation, 2234, Lucas Heights, NSW, Australia",
"Department of Physics and Materials Science, City University of Hong Kong, Hong Kong SAR, China"
],
"type": "Organization"
},
"familyName": "Klose",
"givenName": "Frank",
"id": "sg:person.01155317567.85",
"sameAs": [
"https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01155317567.85"
],
"type": "Person"
},
{
"affiliation": {
"alternateName": "Bragg Institute, Australian Nuclear Science and Technology Organisation, 2234, Lucas Heights, NSW, Australia",
"id": "http://www.grid.ac/institutes/grid.1089.0",
"name": [
"Bragg Institute, Australian Nuclear Science and Technology Organisation, 2234, Lucas Heights, NSW, Australia"
],
"type": "Organization"
},
"familyName": "Rehm",
"givenName": "Christine",
"id": "sg:person.010247561013.77",
"sameAs": [
"https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010247561013.77"
],
"type": "Person"
},
{
"affiliation": {
"alternateName": "Canadian Neutron Beam Centre, Canadian Nuclear Laboratories, K0J 1J0, Chalk River, ON, Canada",
"id": "http://www.grid.ac/institutes/grid.459406.a",
"name": [
"Canadian Neutron Beam Centre, Canadian Nuclear Laboratories, K0J 1J0, Chalk River, ON, Canada"
],
"type": "Organization"
},
"familyName": "Tun",
"givenName": "Zin",
"id": "sg:person.012143264517.06",
"sameAs": [
"https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012143264517.06"
],
"type": "Person"
},
{
"affiliation": {
"alternateName": "Department of Physics and Astronomy, Uppsala University, 75120, Uppsala, Sweden",
"id": "http://www.grid.ac/institutes/grid.8993.b",
"name": [
"Department of Physics and Astronomy, Uppsala University, 75120, Uppsala, Sweden"
],
"type": "Organization"
},
"familyName": "Wolff",
"givenName": "Max",
"id": "sg:person.0771136654.41",
"sameAs": [
"https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0771136654.41"
],
"type": "Person"
},
{
"affiliation": {
"alternateName": "Department of Physics and Astronomy, Uppsala University, 75120, Uppsala, Sweden",
"id": "http://www.grid.ac/institutes/grid.8993.b",
"name": [
"Department of Physics and Astronomy, Uppsala University, 75120, Uppsala, Sweden"
],
"type": "Organization"
},
"familyName": "Hj\u00f6rvarsson",
"givenName": "Bj\u00f6rgvin",
"id": "sg:person.01231212425.56",
"sameAs": [
"https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01231212425.56"
],
"type": "Person"
}
],
"datePublished": "2016-04-23",
"datePublishedReg": "2016-04-23",
"description": "Neutron Reflectometry (NR) is capable to determine the chemical depth profile of thin film samples from the sub-nanometer regime up to about 200\u2009nm thickness. The high sensitivity of neutrons to hydrogen and deuterium enables NR to detect absolute hydrogen concentrations in the at.% range even in nm-thick layers. Therefore, NR is an ideal tool to study in-situ the hydrogen/deuterium absorption and desorption properties of thin films on a nanometer scale\u2014without the need of a calibration sample. After an introduction to the NR technique and required instrumentation, this chapter provides a comprehensive overview of NR applications in various scientific areas, e.g. hydrogen absorption and desorption of Mg-based alloys and thin Nb films, electrochemical measurements on thin Zr and Ti films, and tuning of the oscillating magnetic exchange coupling in Fe/V and Fe/Nb multilayers with hydrogen.",
"editor": [
{
"familyName": "Fritzsche",
"givenName": "Helmut",
"type": "Person"
},
{
"familyName": "Huot",
"givenName": "Jacques",
"type": "Person"
},
{
"familyName": "Fruchart",
"givenName": "Daniel",
"type": "Person"
}
],
"genre": "chapter",
"id": "sg:pub.10.1007/978-3-319-22792-4_5",
"inLanguage": "en",
"isAccessibleForFree": false,
"isPartOf": {
"isbn": [
"978-3-319-22791-7",
"978-3-319-22792-4"
],
"name": "Neutron Scattering and Other Nuclear Techniques for Hydrogen in Materials",
"type": "Book"
},
"keywords": [
"neutron reflectometry",
"thin Nb films",
"hydrogen/deuterium absorption",
"thin film samples",
"chemical depth profiles",
"thin Zr",
"absolute hydrogen concentration",
"Ti films",
"thin films",
"hydrogen concentration",
"sub-nanometer regime",
"film samples",
"Nb multilayers",
"Nb films",
"NR applications",
"hydrogen absorption",
"Fe/Nb multilayers",
"desorption of Mg",
"nanometer scale",
"desorption properties",
"electrochemical measurements",
"thick layer",
"films",
"depth profiles",
"NR technique",
"deuterium absorption",
"reflectometry",
"Fe/V",
"hydrogen",
"alloy",
"high sensitivity",
"magnetic exchange coupling",
"multilayers",
"exchange coupling",
"layer",
"Zr",
"absorption",
"calibration samples",
"tuning",
"properties",
"desorption",
"ideal tool",
"applications",
"instrumentation",
"measurements",
"Mg",
"comprehensive overview",
"range",
"regime",
"technique",
"coupling",
"deuterium",
"scientific areas",
"samples",
"neutrons",
"profile",
"concentration",
"area",
"scale",
"sensitivity",
"tool",
"introduction",
"overview",
"need",
"chapter",
"AT"
],
"name": "Neutron Reflectometry",
"pagination": "115-158",
"productId": [
{
"name": "dimensions_id",
"type": "PropertyValue",
"value": [
"pub.1030510792"
]
},
{
"name": "doi",
"type": "PropertyValue",
"value": [
"10.1007/978-3-319-22792-4_5"
]
}
],
"publisher": {
"name": "Springer Nature",
"type": "Organisation"
},
"sameAs": [
"https://doi.org/10.1007/978-3-319-22792-4_5",
"https://app.dimensions.ai/details/publication/pub.1030510792"
],
"sdDataset": "chapters",
"sdDatePublished": "2022-05-20T07:46",
"sdLicense": "https://scigraph.springernature.com/explorer/license/",
"sdPublisher": {
"name": "Springer Nature - SN SciGraph project",
"type": "Organization"
},
"sdSource": "s3://com-springernature-scigraph/baseset/20220519/entities/gbq_results/chapter/chapter_334.jsonl",
"type": "Chapter",
"url": "https://doi.org/10.1007/978-3-319-22792-4_5"
}
]
Download the RDF metadata as: json-ld nt turtle xml License info
JSON-LD is a popular format for linked data which is fully compatible with JSON.
curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/978-3-319-22792-4_5'
N-Triples is a line-based linked data format ideal for batch operations.
curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/978-3-319-22792-4_5'
Turtle is a human-readable linked data format.
curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/978-3-319-22792-4_5'
RDF/XML is a standard XML format for linked data.
curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/978-3-319-22792-4_5'
This table displays all metadata directly associated to this object as RDF triples.
183 TRIPLES
23 PREDICATES
90 URIs
83 LITERALS
7 BLANK NODES
Subject | Predicate | Object | |
---|---|---|---|
1 | sg:pub.10.1007/978-3-319-22792-4_5 | schema:about | anzsrc-for:09 |
2 | ″ | ″ | anzsrc-for:0912 |
3 | ″ | schema:author | Nc0642131794041fc9b06ff5717185559 |
4 | ″ | schema:datePublished | 2016-04-23 |
5 | ″ | schema:datePublishedReg | 2016-04-23 |
6 | ″ | schema:description | Neutron Reflectometry (NR) is capable to determine the chemical depth profile of thin film samples from the sub-nanometer regime up to about 200 nm thickness. The high sensitivity of neutrons to hydrogen and deuterium enables NR to detect absolute hydrogen concentrations in the at.% range even in nm-thick layers. Therefore, NR is an ideal tool to study in-situ the hydrogen/deuterium absorption and desorption properties of thin films on a nanometer scale—without the need of a calibration sample. After an introduction to the NR technique and required instrumentation, this chapter provides a comprehensive overview of NR applications in various scientific areas, e.g. hydrogen absorption and desorption of Mg-based alloys and thin Nb films, electrochemical measurements on thin Zr and Ti films, and tuning of the oscillating magnetic exchange coupling in Fe/V and Fe/Nb multilayers with hydrogen. |
7 | ″ | schema:editor | N8b4b148d9ad9490ca38dd7f18619c681 |
8 | ″ | schema:genre | chapter |
9 | ″ | schema:inLanguage | en |
10 | ″ | schema:isAccessibleForFree | false |
11 | ″ | schema:isPartOf | N94a29af9b3cf4776b275002718d0ac55 |
12 | ″ | schema:keywords | AT |
13 | ″ | ″ | Fe/Nb multilayers |
14 | ″ | ″ | Fe/V |
15 | ″ | ″ | Mg |
16 | ″ | ″ | NR applications |
17 | ″ | ″ | NR technique |
18 | ″ | ″ | Nb films |
19 | ″ | ″ | Nb multilayers |
20 | ″ | ″ | Ti films |
21 | ″ | ″ | Zr |
22 | ″ | ″ | absolute hydrogen concentration |
23 | ″ | ″ | absorption |
24 | ″ | ″ | alloy |
25 | ″ | ″ | applications |
26 | ″ | ″ | area |
27 | ″ | ″ | calibration samples |
28 | ″ | ″ | chapter |
29 | ″ | ″ | chemical depth profiles |
30 | ″ | ″ | comprehensive overview |
31 | ″ | ″ | concentration |
32 | ″ | ″ | coupling |
33 | ″ | ″ | depth profiles |
34 | ″ | ″ | desorption |
35 | ″ | ″ | desorption of Mg |
36 | ″ | ″ | desorption properties |
37 | ″ | ″ | deuterium |
38 | ″ | ″ | deuterium absorption |
39 | ″ | ″ | electrochemical measurements |
40 | ″ | ″ | exchange coupling |
41 | ″ | ″ | film samples |
42 | ″ | ″ | films |
43 | ″ | ″ | high sensitivity |
44 | ″ | ″ | hydrogen |
45 | ″ | ″ | hydrogen absorption |
46 | ″ | ″ | hydrogen concentration |
47 | ″ | ″ | hydrogen/deuterium absorption |
48 | ″ | ″ | ideal tool |
49 | ″ | ″ | instrumentation |
50 | ″ | ″ | introduction |
51 | ″ | ″ | layer |
52 | ″ | ″ | magnetic exchange coupling |
53 | ″ | ″ | measurements |
54 | ″ | ″ | multilayers |
55 | ″ | ″ | nanometer scale |
56 | ″ | ″ | need |
57 | ″ | ″ | neutron reflectometry |
58 | ″ | ″ | neutrons |
59 | ″ | ″ | overview |
60 | ″ | ″ | profile |
61 | ″ | ″ | properties |
62 | ″ | ″ | range |
63 | ″ | ″ | reflectometry |
64 | ″ | ″ | regime |
65 | ″ | ″ | samples |
66 | ″ | ″ | scale |
67 | ″ | ″ | scientific areas |
68 | ″ | ″ | sensitivity |
69 | ″ | ″ | sub-nanometer regime |
70 | ″ | ″ | technique |
71 | ″ | ″ | thick layer |
72 | ″ | ″ | thin Nb films |
73 | ″ | ″ | thin Zr |
74 | ″ | ″ | thin film samples |
75 | ″ | ″ | thin films |
76 | ″ | ″ | tool |
77 | ″ | ″ | tuning |
78 | ″ | schema:name | Neutron Reflectometry |
79 | ″ | schema:pagination | 115-158 |
80 | ″ | schema:productId | N0e09eee7efe5489588044dcad1b03db3 |
81 | ″ | ″ | Nbd9126c72e78450585d73294d7f7b3b4 |
82 | ″ | schema:publisher | Nb2a4cf4a8ec9495d9a7c1ef82802d321 |
83 | ″ | schema:sameAs | https://app.dimensions.ai/details/publication/pub.1030510792 |
84 | ″ | ″ | https://doi.org/10.1007/978-3-319-22792-4_5 |
85 | ″ | schema:sdDatePublished | 2022-05-20T07:46 |
86 | ″ | schema:sdLicense | https://scigraph.springernature.com/explorer/license/ |
87 | ″ | schema:sdPublisher | N2d07bcfff01c4e228bee2d89368d1e9f |
88 | ″ | schema:url | https://doi.org/10.1007/978-3-319-22792-4_5 |
89 | ″ | sgo:license | sg:explorer/license/ |
90 | ″ | sgo:sdDataset | chapters |
91 | ″ | rdf:type | schema:Chapter |
92 | N0e09eee7efe5489588044dcad1b03db3 | schema:name | doi |
93 | ″ | schema:value | 10.1007/978-3-319-22792-4_5 |
94 | ″ | rdf:type | schema:PropertyValue |
95 | N14e82608b5574d1e87f9945bcf0c7188 | rdf:first | sg:person.01231212425.56 |
96 | ″ | rdf:rest | rdf:nil |
97 | N19e279b6c98340a9b731726d3ee626bc | rdf:first | sg:person.010247561013.77 |
98 | ″ | rdf:rest | Nf7cbd8287e3943e8956107bfda03d4fd |
99 | N2d07bcfff01c4e228bee2d89368d1e9f | schema:name | Springer Nature - SN SciGraph project |
100 | ″ | rdf:type | schema:Organization |
101 | N3add5bf0f4464336937ad3e765a5affb | rdf:first | Nb4060f525b514796959bcd3ad5516127 |
102 | ″ | rdf:rest | Nc616bc53872f4144a2f8547859c5d49a |
103 | N3d915a118e2c4d229feb37a045b1078e | schema:familyName | Fruchart |
104 | ″ | schema:givenName | Daniel |
105 | ″ | rdf:type | schema:Person |
106 | N8b4b148d9ad9490ca38dd7f18619c681 | rdf:first | Nc28d851b1b40458ea83404b61f7e8866 |
107 | ″ | rdf:rest | N3add5bf0f4464336937ad3e765a5affb |
108 | N94a29af9b3cf4776b275002718d0ac55 | schema:isbn | 978-3-319-22791-7 |
109 | ″ | ″ | 978-3-319-22792-4 |
110 | ″ | schema:name | Neutron Scattering and Other Nuclear Techniques for Hydrogen in Materials |
111 | ″ | rdf:type | schema:Book |
112 | Na173679484f54a37aa88fc2eda33ff12 | rdf:first | sg:person.01155317567.85 |
113 | ″ | rdf:rest | N19e279b6c98340a9b731726d3ee626bc |
114 | Nb2a4cf4a8ec9495d9a7c1ef82802d321 | schema:name | Springer Nature |
115 | ″ | rdf:type | schema:Organisation |
116 | Nb4060f525b514796959bcd3ad5516127 | schema:familyName | Huot |
117 | ″ | schema:givenName | Jacques |
118 | ″ | rdf:type | schema:Person |
119 | Nbd9126c72e78450585d73294d7f7b3b4 | schema:name | dimensions_id |
120 | ″ | schema:value | pub.1030510792 |
121 | ″ | rdf:type | schema:PropertyValue |
122 | Nc0642131794041fc9b06ff5717185559 | rdf:first | sg:person.011000116611.53 |
123 | ″ | rdf:rest | Na173679484f54a37aa88fc2eda33ff12 |
124 | Nc28d851b1b40458ea83404b61f7e8866 | schema:familyName | Fritzsche |
125 | ″ | schema:givenName | Helmut |
126 | ″ | rdf:type | schema:Person |
127 | Nc616bc53872f4144a2f8547859c5d49a | rdf:first | N3d915a118e2c4d229feb37a045b1078e |
128 | ″ | rdf:rest | rdf:nil |
129 | Ne294733c8ea643209e6b07de147b1e70 | rdf:first | sg:person.0771136654.41 |
130 | ″ | rdf:rest | N14e82608b5574d1e87f9945bcf0c7188 |
131 | Nf7cbd8287e3943e8956107bfda03d4fd | rdf:first | sg:person.012143264517.06 |
132 | ″ | rdf:rest | Ne294733c8ea643209e6b07de147b1e70 |
133 | anzsrc-for:09 | schema:inDefinedTermSet | anzsrc-for: |
134 | ″ | schema:name | Engineering |
135 | ″ | rdf:type | schema:DefinedTerm |
136 | anzsrc-for:0912 | schema:inDefinedTermSet | anzsrc-for: |
137 | ″ | schema:name | Materials Engineering |
138 | ″ | rdf:type | schema:DefinedTerm |
139 | sg:person.010247561013.77 | schema:affiliation | grid-institutes:grid.1089.0 |
140 | ″ | schema:familyName | Rehm |
141 | ″ | schema:givenName | Christine |
142 | ″ | schema:sameAs | https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010247561013.77 |
143 | ″ | rdf:type | schema:Person |
144 | sg:person.011000116611.53 | schema:affiliation | grid-institutes:grid.459406.a |
145 | ″ | schema:familyName | Fritzsche |
146 | ″ | schema:givenName | Helmut |
147 | ″ | schema:sameAs | https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011000116611.53 |
148 | ″ | rdf:type | schema:Person |
149 | sg:person.01155317567.85 | schema:affiliation | grid-institutes:grid.35030.35 |
150 | ″ | schema:familyName | Klose |
151 | ″ | schema:givenName | Frank |
152 | ″ | schema:sameAs | https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01155317567.85 |
153 | ″ | rdf:type | schema:Person |
154 | sg:person.012143264517.06 | schema:affiliation | grid-institutes:grid.459406.a |
155 | ″ | schema:familyName | Tun |
156 | ″ | schema:givenName | Zin |
157 | ″ | schema:sameAs | https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012143264517.06 |
158 | ″ | rdf:type | schema:Person |
159 | sg:person.01231212425.56 | schema:affiliation | grid-institutes:grid.8993.b |
160 | ″ | schema:familyName | Hjörvarsson |
161 | ″ | schema:givenName | Björgvin |
162 | ″ | schema:sameAs | https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01231212425.56 |
163 | ″ | rdf:type | schema:Person |
164 | sg:person.0771136654.41 | schema:affiliation | grid-institutes:grid.8993.b |
165 | ″ | schema:familyName | Wolff |
166 | ″ | schema:givenName | Max |
167 | ″ | schema:sameAs | https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0771136654.41 |
168 | ″ | rdf:type | schema:Person |
169 | grid-institutes:grid.1089.0 | schema:alternateName | Bragg Institute, Australian Nuclear Science and Technology Organisation, 2234, Lucas Heights, NSW, Australia |
170 | ″ | schema:name | Bragg Institute, Australian Nuclear Science and Technology Organisation, 2234, Lucas Heights, NSW, Australia |
171 | ″ | rdf:type | schema:Organization |
172 | grid-institutes:grid.35030.35 | schema:alternateName | Department of Physics and Materials Science, City University of Hong Kong, Hong Kong SAR, China |
173 | ″ | schema:name | Bragg Institute, Australian Nuclear Science and Technology Organisation, 2234, Lucas Heights, NSW, Australia |
174 | ″ | ″ | Department of Physics and Materials Science, City University of Hong Kong, Hong Kong SAR, China |
175 | ″ | rdf:type | schema:Organization |
176 | grid-institutes:grid.459406.a | schema:alternateName | Canadian Neutron Beam Centre, Canadian Nuclear Laboratories, K0J 1J0, Chalk River, ON, Canada |
177 | ″ | ″ | Canadian Nuclear Laboratories, K0J 1J0, Chalk River, ON, Canada |
178 | ″ | schema:name | Canadian Neutron Beam Centre, Canadian Nuclear Laboratories, K0J 1J0, Chalk River, ON, Canada |
179 | ″ | ″ | Canadian Nuclear Laboratories, K0J 1J0, Chalk River, ON, Canada |
180 | ″ | rdf:type | schema:Organization |
181 | grid-institutes:grid.8993.b | schema:alternateName | Department of Physics and Astronomy, Uppsala University, 75120, Uppsala, Sweden |
182 | ″ | schema:name | Department of Physics and Astronomy, Uppsala University, 75120, Uppsala, Sweden |
183 | ″ | rdf:type | schema:Organization |