Mining Dependencies Considering Time Lag in Spatio-Temporal Traffic Data View Full Text


Ontology type: schema:Chapter     


Chapter Info

DATE

2015-06-06

AUTHORS

Xiabing Zhou , Haikun Hong , Xingxing Xing , Wenhao Huang , Kaigui Bian , Kunqing Xie

ABSTRACT

Learning dependency structure is meaningful to characterize causal or statistical relationships. Traditional dependencies learning algorithms only use the same time stamp data of variables. However, in many real-world applications, such as traffic system and climate, time lag is a key feature of hidden temporal dependencies, and plays an essential role in interpreting the cause of discovered temporal dependencies. In this paper, we propose a method for mining dependencies by considering the time lag. The proposed approach is based on a decomposition of the coefficients into products of two-level hierarchical coefficients, where one represents feature-level and the other represents time-level. Specially, we capture the prior information of time lag in spatio-temporal traffic data. We construct a probabilistic formulation by applying some probabilistic priors to these hierarchical coefficients, and devise an expectation-maximization (EM) algorithm to learn the model parameters. We evaluate our model on both synthetic and real-world highway traffic datasets. Experimental results show the effectiveness of our method. More... »

PAGES

285-296

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/978-3-319-21042-1_23

DOI

http://dx.doi.org/10.1007/978-3-319-21042-1_23

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1006772365


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/08", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Information and Computing Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0801", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Artificial Intelligence and Image Processing", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0806", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Information Systems", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Key Laboratory of Machine Perception, Ministry of Education, Peking University, 100871, Beijing, China", 
          "id": "http://www.grid.ac/institutes/None", 
          "name": [
            "Key Laboratory of Machine Perception, Ministry of Education, Peking University, 100871, Beijing, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Zhou", 
        "givenName": "Xiabing", 
        "id": "sg:person.012243456125.71", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012243456125.71"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Key Laboratory of Machine Perception, Ministry of Education, Peking University, 100871, Beijing, China", 
          "id": "http://www.grid.ac/institutes/None", 
          "name": [
            "Key Laboratory of Machine Perception, Ministry of Education, Peking University, 100871, Beijing, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Hong", 
        "givenName": "Haikun", 
        "id": "sg:person.014027700475.34", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014027700475.34"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Key Laboratory of Machine Perception, Ministry of Education, Peking University, 100871, Beijing, China", 
          "id": "http://www.grid.ac/institutes/None", 
          "name": [
            "Key Laboratory of Machine Perception, Ministry of Education, Peking University, 100871, Beijing, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Xing", 
        "givenName": "Xingxing", 
        "id": "sg:person.010650515125.21", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010650515125.21"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Key Laboratory of Machine Perception, Ministry of Education, Peking University, 100871, Beijing, China", 
          "id": "http://www.grid.ac/institutes/None", 
          "name": [
            "Key Laboratory of Machine Perception, Ministry of Education, Peking University, 100871, Beijing, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Huang", 
        "givenName": "Wenhao", 
        "id": "sg:person.013031074243.41", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013031074243.41"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Key Laboratory of Machine Perception, Ministry of Education, Peking University, 100871, Beijing, China", 
          "id": "http://www.grid.ac/institutes/None", 
          "name": [
            "Key Laboratory of Machine Perception, Ministry of Education, Peking University, 100871, Beijing, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Bian", 
        "givenName": "Kaigui", 
        "id": "sg:person.012753647657.41", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012753647657.41"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Key Laboratory of Machine Perception, Ministry of Education, Peking University, 100871, Beijing, China", 
          "id": "http://www.grid.ac/institutes/None", 
          "name": [
            "Key Laboratory of Machine Perception, Ministry of Education, Peking University, 100871, Beijing, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Xie", 
        "givenName": "Kunqing", 
        "id": "sg:person.016340421223.44", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016340421223.44"
        ], 
        "type": "Person"
      }
    ], 
    "datePublished": "2015-06-06", 
    "datePublishedReg": "2015-06-06", 
    "description": "Learning dependency structure is meaningful to characterize causal or statistical relationships. Traditional dependencies learning algorithms only use the same time stamp data of variables. However, in many real-world applications, such as traffic system and climate, time lag is a key feature of hidden temporal dependencies, and plays an essential role in interpreting the cause of discovered temporal dependencies. In this paper, we propose a method for mining dependencies by considering the time lag. The proposed approach is based on a decomposition of the coefficients into products of two-level hierarchical coefficients, where one represents feature-level and the other represents time-level. Specially, we capture the prior information of time lag in spatio-temporal traffic data. We construct a probabilistic formulation by applying some probabilistic priors to these hierarchical coefficients, and devise an expectation-maximization (EM) algorithm to learn the model parameters. We evaluate our model on both synthetic and real-world highway traffic datasets. Experimental results show the effectiveness of our method.", 
    "editor": [
      {
        "familyName": "Dong", 
        "givenName": "Xin Luna", 
        "type": "Person"
      }, 
      {
        "familyName": "Yu", 
        "givenName": "Xiaohui", 
        "type": "Person"
      }, 
      {
        "familyName": "Li", 
        "givenName": "Jian", 
        "type": "Person"
      }, 
      {
        "familyName": "Sun", 
        "givenName": "Yizhou", 
        "type": "Person"
      }
    ], 
    "genre": "chapter", 
    "id": "sg:pub.10.1007/978-3-319-21042-1_23", 
    "inLanguage": "en", 
    "isAccessibleForFree": false, 
    "isPartOf": {
      "isbn": [
        "978-3-319-21041-4", 
        "978-3-319-21042-1"
      ], 
      "name": "Web-Age Information Management", 
      "type": "Book"
    }, 
    "keywords": [
      "spatio-temporal traffic data", 
      "real-world highway traffic datasets", 
      "temporal dependencies", 
      "traffic data", 
      "mining dependencies", 
      "real-world applications", 
      "time stamp data", 
      "traffic dataset", 
      "expectation-maximization algorithm", 
      "probabilistic priors", 
      "hierarchical coefficients", 
      "probabilistic formulation", 
      "traffic system", 
      "prior information", 
      "dependency structure", 
      "traditional dependency", 
      "algorithm", 
      "experimental results", 
      "key features", 
      "dependency", 
      "datasets", 
      "model parameters", 
      "priors", 
      "information", 
      "data", 
      "applications", 
      "time lag", 
      "method", 
      "effectiveness", 
      "system", 
      "features", 
      "decomposition", 
      "model", 
      "results", 
      "statistical relationship", 
      "parameters", 
      "formulation", 
      "coefficient", 
      "lag", 
      "structure", 
      "causal", 
      "variables", 
      "products", 
      "essential role", 
      "relationship", 
      "role", 
      "cause", 
      "climate", 
      "paper", 
      "approach", 
      "same time stamp data", 
      "stamp data", 
      "hidden temporal dependencies", 
      "two-level hierarchical coefficients", 
      "highway traffic datasets"
    ], 
    "name": "Mining Dependencies Considering Time Lag in Spatio-Temporal Traffic Data", 
    "pagination": "285-296", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1006772365"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/978-3-319-21042-1_23"
        ]
      }
    ], 
    "publisher": {
      "name": "Springer Nature", 
      "type": "Organisation"
    }, 
    "sameAs": [
      "https://doi.org/10.1007/978-3-319-21042-1_23", 
      "https://app.dimensions.ai/details/publication/pub.1006772365"
    ], 
    "sdDataset": "chapters", 
    "sdDatePublished": "2021-12-01T19:56", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20211201/entities/gbq_results/chapter/chapter_140.jsonl", 
    "type": "Chapter", 
    "url": "https://doi.org/10.1007/978-3-319-21042-1_23"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/978-3-319-21042-1_23'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/978-3-319-21042-1_23'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/978-3-319-21042-1_23'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/978-3-319-21042-1_23'


 

This table displays all metadata directly associated to this object as RDF triples.

169 TRIPLES      23 PREDICATES      81 URIs      73 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/978-3-319-21042-1_23 schema:about anzsrc-for:08
2 anzsrc-for:0801
3 anzsrc-for:0806
4 schema:author Nde9f6908a4a242629aa18bdb105aca58
5 schema:datePublished 2015-06-06
6 schema:datePublishedReg 2015-06-06
7 schema:description Learning dependency structure is meaningful to characterize causal or statistical relationships. Traditional dependencies learning algorithms only use the same time stamp data of variables. However, in many real-world applications, such as traffic system and climate, time lag is a key feature of hidden temporal dependencies, and plays an essential role in interpreting the cause of discovered temporal dependencies. In this paper, we propose a method for mining dependencies by considering the time lag. The proposed approach is based on a decomposition of the coefficients into products of two-level hierarchical coefficients, where one represents feature-level and the other represents time-level. Specially, we capture the prior information of time lag in spatio-temporal traffic data. We construct a probabilistic formulation by applying some probabilistic priors to these hierarchical coefficients, and devise an expectation-maximization (EM) algorithm to learn the model parameters. We evaluate our model on both synthetic and real-world highway traffic datasets. Experimental results show the effectiveness of our method.
8 schema:editor N0fdda737c6564e9b9a1308abc2e3ef44
9 schema:genre chapter
10 schema:inLanguage en
11 schema:isAccessibleForFree false
12 schema:isPartOf N1fb3b8fa844c4775901c62524eb221e4
13 schema:keywords algorithm
14 applications
15 approach
16 causal
17 cause
18 climate
19 coefficient
20 data
21 datasets
22 decomposition
23 dependency
24 dependency structure
25 effectiveness
26 essential role
27 expectation-maximization algorithm
28 experimental results
29 features
30 formulation
31 hidden temporal dependencies
32 hierarchical coefficients
33 highway traffic datasets
34 information
35 key features
36 lag
37 method
38 mining dependencies
39 model
40 model parameters
41 paper
42 parameters
43 prior information
44 priors
45 probabilistic formulation
46 probabilistic priors
47 products
48 real-world applications
49 real-world highway traffic datasets
50 relationship
51 results
52 role
53 same time stamp data
54 spatio-temporal traffic data
55 stamp data
56 statistical relationship
57 structure
58 system
59 temporal dependencies
60 time lag
61 time stamp data
62 traditional dependency
63 traffic data
64 traffic dataset
65 traffic system
66 two-level hierarchical coefficients
67 variables
68 schema:name Mining Dependencies Considering Time Lag in Spatio-Temporal Traffic Data
69 schema:pagination 285-296
70 schema:productId N451f0844b98c48e9a15c4d3178c45798
71 Nddb84d9c6ced4ec4bc7557fabf907d09
72 schema:publisher Nd5416805084e4f4ebe501caef3e02b91
73 schema:sameAs https://app.dimensions.ai/details/publication/pub.1006772365
74 https://doi.org/10.1007/978-3-319-21042-1_23
75 schema:sdDatePublished 2021-12-01T19:56
76 schema:sdLicense https://scigraph.springernature.com/explorer/license/
77 schema:sdPublisher N6f0ca60a43e44f3ca9e09e21bc735aeb
78 schema:url https://doi.org/10.1007/978-3-319-21042-1_23
79 sgo:license sg:explorer/license/
80 sgo:sdDataset chapters
81 rdf:type schema:Chapter
82 N0fdda737c6564e9b9a1308abc2e3ef44 rdf:first N7394fd718a5d4214b82ed6a8bf3ac39c
83 rdf:rest Nc1de4bad22c24a408a8217cd0b1a5368
84 N1fb3b8fa844c4775901c62524eb221e4 schema:isbn 978-3-319-21041-4
85 978-3-319-21042-1
86 schema:name Web-Age Information Management
87 rdf:type schema:Book
88 N3dc2905d557a44dbb18188e80ec5e3a2 rdf:first Ndd7377843db44dc39d369c48e694a74c
89 rdf:rest N43c68dea3eed45d1aa1fbf94a869a5c6
90 N43c68dea3eed45d1aa1fbf94a869a5c6 rdf:first N480108381288488d9dec167ac145801c
91 rdf:rest rdf:nil
92 N451f0844b98c48e9a15c4d3178c45798 schema:name doi
93 schema:value 10.1007/978-3-319-21042-1_23
94 rdf:type schema:PropertyValue
95 N480108381288488d9dec167ac145801c schema:familyName Sun
96 schema:givenName Yizhou
97 rdf:type schema:Person
98 N6f0ca60a43e44f3ca9e09e21bc735aeb schema:name Springer Nature - SN SciGraph project
99 rdf:type schema:Organization
100 N6f34d0de7d3d4a568bb6bac8743695e1 rdf:first sg:person.016340421223.44
101 rdf:rest rdf:nil
102 N7394fd718a5d4214b82ed6a8bf3ac39c schema:familyName Dong
103 schema:givenName Xin Luna
104 rdf:type schema:Person
105 N9a23d6c8e4b14fefabe80bfdca59c75b schema:familyName Yu
106 schema:givenName Xiaohui
107 rdf:type schema:Person
108 Nb5d4b6b32962457e9e49ba1a140e55fb rdf:first sg:person.014027700475.34
109 rdf:rest Nb90950a52c9a41269e1a538b9cf57b1e
110 Nb90950a52c9a41269e1a538b9cf57b1e rdf:first sg:person.010650515125.21
111 rdf:rest Nda2bf5ff979a4701b497ca97e28663fc
112 Nc1de4bad22c24a408a8217cd0b1a5368 rdf:first N9a23d6c8e4b14fefabe80bfdca59c75b
113 rdf:rest N3dc2905d557a44dbb18188e80ec5e3a2
114 Nd5416805084e4f4ebe501caef3e02b91 schema:name Springer Nature
115 rdf:type schema:Organisation
116 Nda2bf5ff979a4701b497ca97e28663fc rdf:first sg:person.013031074243.41
117 rdf:rest Ne068b84bc9a949e196e6434f1bc4d225
118 Ndd7377843db44dc39d369c48e694a74c schema:familyName Li
119 schema:givenName Jian
120 rdf:type schema:Person
121 Nddb84d9c6ced4ec4bc7557fabf907d09 schema:name dimensions_id
122 schema:value pub.1006772365
123 rdf:type schema:PropertyValue
124 Nde9f6908a4a242629aa18bdb105aca58 rdf:first sg:person.012243456125.71
125 rdf:rest Nb5d4b6b32962457e9e49ba1a140e55fb
126 Ne068b84bc9a949e196e6434f1bc4d225 rdf:first sg:person.012753647657.41
127 rdf:rest N6f34d0de7d3d4a568bb6bac8743695e1
128 anzsrc-for:08 schema:inDefinedTermSet anzsrc-for:
129 schema:name Information and Computing Sciences
130 rdf:type schema:DefinedTerm
131 anzsrc-for:0801 schema:inDefinedTermSet anzsrc-for:
132 schema:name Artificial Intelligence and Image Processing
133 rdf:type schema:DefinedTerm
134 anzsrc-for:0806 schema:inDefinedTermSet anzsrc-for:
135 schema:name Information Systems
136 rdf:type schema:DefinedTerm
137 sg:person.010650515125.21 schema:affiliation grid-institutes:None
138 schema:familyName Xing
139 schema:givenName Xingxing
140 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010650515125.21
141 rdf:type schema:Person
142 sg:person.012243456125.71 schema:affiliation grid-institutes:None
143 schema:familyName Zhou
144 schema:givenName Xiabing
145 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012243456125.71
146 rdf:type schema:Person
147 sg:person.012753647657.41 schema:affiliation grid-institutes:None
148 schema:familyName Bian
149 schema:givenName Kaigui
150 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012753647657.41
151 rdf:type schema:Person
152 sg:person.013031074243.41 schema:affiliation grid-institutes:None
153 schema:familyName Huang
154 schema:givenName Wenhao
155 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013031074243.41
156 rdf:type schema:Person
157 sg:person.014027700475.34 schema:affiliation grid-institutes:None
158 schema:familyName Hong
159 schema:givenName Haikun
160 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014027700475.34
161 rdf:type schema:Person
162 sg:person.016340421223.44 schema:affiliation grid-institutes:None
163 schema:familyName Xie
164 schema:givenName Kunqing
165 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016340421223.44
166 rdf:type schema:Person
167 grid-institutes:None schema:alternateName Key Laboratory of Machine Perception, Ministry of Education, Peking University, 100871, Beijing, China
168 schema:name Key Laboratory of Machine Perception, Ministry of Education, Peking University, 100871, Beijing, China
169 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...