Autonomous Parking Using Previous Paths View Full Text


Ontology type: schema:Chapter     


Chapter Info

DATE

2015-06-30

AUTHORS

Christoph Siedentop , Viktor Laukart , Boris Krastev , Dietmar Kasper , Andreas Wedel , Gabi Breuel , Cyrill Stachniss

ABSTRACT

This paper is about mapping the drivable area of a parking lot for autonomous parking. Manual map creation for automated parking is often impossible, especially when parking on private grounds. One aspect is that the number of private properties is very large and private parking should not be included in public maps. The other aspect is that an owner and operator of a car often has very specific ideas of where the car may be driven. Our approach creates maps using just the previously driven paths. We describe the drivable area through triangles using established methods from Computer Graphics. These triangles are generated by overlaying circles of a certain radius over the driven paths. These circles create a so-called alpha-shape and approximate the drivable area. The description through triangles (“Delaunay triangulation”) allows for fast retrieval and easy expansion with new paths. Finally, a simple conversion of the triangulation into a Voronoi diagram enables fast path searching. In this paper we thus present an efficient framework for determining drivable areas and allows searching for a drivable path. Finally, we show that this method enables real-time implementation in an autonomous car and can cope with new obstacles at planning time. More... »

PAGES

3-14

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/978-3-319-20855-8_1

DOI

http://dx.doi.org/10.1007/978-3-319-20855-8_1

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1039644420


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/08", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Information and Computing Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0801", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Artificial Intelligence and Image Processing", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Daimler AG, Autonomous Driving, HPC G023, 71059, Sindelfingen, Germany", 
          "id": "http://www.grid.ac/institutes/grid.5433.1", 
          "name": [
            "Daimler AG, Autonomous Driving, HPC G023, 71059, Sindelfingen, Germany"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Siedentop", 
        "givenName": "Christoph", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Daimler AG, Autonomous Driving, HPC G023, 71059, Sindelfingen, Germany", 
          "id": "http://www.grid.ac/institutes/grid.5433.1", 
          "name": [
            "Daimler AG, Autonomous Driving, HPC G023, 71059, Sindelfingen, Germany"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Laukart", 
        "givenName": "Viktor", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Daimler AG, Autonomous Driving, HPC G023, 71059, Sindelfingen, Germany", 
          "id": "http://www.grid.ac/institutes/grid.5433.1", 
          "name": [
            "Daimler AG, Autonomous Driving, HPC G023, 71059, Sindelfingen, Germany"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Krastev", 
        "givenName": "Boris", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Daimler AG, Autonomous Driving, HPC G023, 71059, Sindelfingen, Germany", 
          "id": "http://www.grid.ac/institutes/grid.5433.1", 
          "name": [
            "Daimler AG, Autonomous Driving, HPC G023, 71059, Sindelfingen, Germany"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Kasper", 
        "givenName": "Dietmar", 
        "id": "sg:person.014403300435.29", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014403300435.29"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Daimler AG, Autonomous Driving, HPC G023, 71059, Sindelfingen, Germany", 
          "id": "http://www.grid.ac/institutes/grid.5433.1", 
          "name": [
            "Daimler AG, Autonomous Driving, HPC G023, 71059, Sindelfingen, Germany"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Wedel", 
        "givenName": "Andreas", 
        "id": "sg:person.016640157206.58", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016640157206.58"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Daimler AG, Autonomous Driving, HPC G023, 71059, Sindelfingen, Germany", 
          "id": "http://www.grid.ac/institutes/grid.5433.1", 
          "name": [
            "Daimler AG, Autonomous Driving, HPC G023, 71059, Sindelfingen, Germany"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Breuel", 
        "givenName": "Gabi", 
        "id": "sg:person.011366060155.51", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011366060155.51"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Institute for Geodesy and Geoinformation, University of Bonn, Nussallee 15, 53115, Bonn, Germany", 
          "id": "http://www.grid.ac/institutes/grid.10388.32", 
          "name": [
            "Institute for Geodesy and Geoinformation, University of Bonn, Nussallee 15, 53115, Bonn, Germany"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Stachniss", 
        "givenName": "Cyrill", 
        "id": "sg:person.015152144445.37", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015152144445.37"
        ], 
        "type": "Person"
      }
    ], 
    "datePublished": "2015-06-30", 
    "datePublishedReg": "2015-06-30", 
    "description": "This paper is about mapping the drivable area of a parking lot for autonomous parking. Manual map creation for automated parking is often impossible, especially when parking on private grounds. One aspect is that the number of private properties is very large and private parking should not be included in public maps. The other aspect is that an owner and operator of a car often has very specific ideas of where the car may be driven. Our approach creates maps using just the previously driven paths. We describe the drivable area through triangles using established methods from Computer Graphics. These triangles are generated by overlaying circles of a certain radius over the driven paths. These circles create a so-called alpha-shape and approximate the drivable area. The description through triangles (\u201cDelaunay triangulation\u201d) allows for fast retrieval and easy expansion with new paths. Finally, a simple conversion of the triangulation into a Voronoi diagram enables fast path searching. In this paper we thus present an efficient framework for determining drivable areas and allows searching for a drivable path. Finally, we show that this method enables real-time implementation in an autonomous car and can cope with new obstacles at planning time.", 
    "editor": [
      {
        "familyName": "Schulze", 
        "givenName": "Tim", 
        "type": "Person"
      }, 
      {
        "familyName": "M\u00fcller", 
        "givenName": "Beate", 
        "type": "Person"
      }, 
      {
        "familyName": "Meyer", 
        "givenName": "Gereon", 
        "type": "Person"
      }
    ], 
    "genre": "chapter", 
    "id": "sg:pub.10.1007/978-3-319-20855-8_1", 
    "isAccessibleForFree": false, 
    "isPartOf": {
      "isbn": [
        "978-3-319-20854-1", 
        "978-3-319-20855-8"
      ], 
      "name": "Advanced Microsystems for Automotive Applications 2015", 
      "type": "Book"
    }, 
    "keywords": [
      "drivable area", 
      "autonomous parking", 
      "real-time implementation", 
      "fast retrieval", 
      "computer graphics", 
      "autonomous cars", 
      "drivable path", 
      "efficient framework", 
      "map creation", 
      "easy expansion", 
      "fastest path", 
      "new obstacles", 
      "planning time", 
      "Voronoi diagram", 
      "previous path", 
      "public map", 
      "parking", 
      "cars", 
      "path", 
      "private parking", 
      "graphics", 
      "retrieval", 
      "certain radius", 
      "new path", 
      "maps", 
      "implementation", 
      "framework", 
      "private grounds", 
      "simple conversion", 
      "operators", 
      "specific ideas", 
      "obstacles", 
      "method", 
      "creation", 
      "owners", 
      "triangulation", 
      "aspects", 
      "idea", 
      "triangle", 
      "area", 
      "description", 
      "number", 
      "diagram", 
      "time", 
      "circle", 
      "ground", 
      "private property", 
      "expansion", 
      "properties", 
      "conversion", 
      "radius", 
      "paper", 
      "approach"
    ], 
    "name": "Autonomous Parking Using Previous Paths", 
    "pagination": "3-14", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1039644420"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/978-3-319-20855-8_1"
        ]
      }
    ], 
    "publisher": {
      "name": "Springer Nature", 
      "type": "Organisation"
    }, 
    "sameAs": [
      "https://doi.org/10.1007/978-3-319-20855-8_1", 
      "https://app.dimensions.ai/details/publication/pub.1039644420"
    ], 
    "sdDataset": "chapters", 
    "sdDatePublished": "2022-11-24T21:14", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20221124/entities/gbq_results/chapter/chapter_229.jsonl", 
    "type": "Chapter", 
    "url": "https://doi.org/10.1007/978-3-319-20855-8_1"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/978-3-319-20855-8_1'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/978-3-319-20855-8_1'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/978-3-319-20855-8_1'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/978-3-319-20855-8_1'


 

This table displays all metadata directly associated to this object as RDF triples.

164 TRIPLES      22 PREDICATES      77 URIs      70 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/978-3-319-20855-8_1 schema:about anzsrc-for:08
2 anzsrc-for:0801
3 schema:author Nda14b05b35d04fe79f633a695c10409a
4 schema:datePublished 2015-06-30
5 schema:datePublishedReg 2015-06-30
6 schema:description This paper is about mapping the drivable area of a parking lot for autonomous parking. Manual map creation for automated parking is often impossible, especially when parking on private grounds. One aspect is that the number of private properties is very large and private parking should not be included in public maps. The other aspect is that an owner and operator of a car often has very specific ideas of where the car may be driven. Our approach creates maps using just the previously driven paths. We describe the drivable area through triangles using established methods from Computer Graphics. These triangles are generated by overlaying circles of a certain radius over the driven paths. These circles create a so-called alpha-shape and approximate the drivable area. The description through triangles (“Delaunay triangulation”) allows for fast retrieval and easy expansion with new paths. Finally, a simple conversion of the triangulation into a Voronoi diagram enables fast path searching. In this paper we thus present an efficient framework for determining drivable areas and allows searching for a drivable path. Finally, we show that this method enables real-time implementation in an autonomous car and can cope with new obstacles at planning time.
7 schema:editor N97d8aea3257d42cd8a2a88d2c66f3980
8 schema:genre chapter
9 schema:isAccessibleForFree false
10 schema:isPartOf Nf8927f7a8f3640218d613a28ac3458dd
11 schema:keywords Voronoi diagram
12 approach
13 area
14 aspects
15 autonomous cars
16 autonomous parking
17 cars
18 certain radius
19 circle
20 computer graphics
21 conversion
22 creation
23 description
24 diagram
25 drivable area
26 drivable path
27 easy expansion
28 efficient framework
29 expansion
30 fast retrieval
31 fastest path
32 framework
33 graphics
34 ground
35 idea
36 implementation
37 map creation
38 maps
39 method
40 new obstacles
41 new path
42 number
43 obstacles
44 operators
45 owners
46 paper
47 parking
48 path
49 planning time
50 previous path
51 private grounds
52 private parking
53 private property
54 properties
55 public map
56 radius
57 real-time implementation
58 retrieval
59 simple conversion
60 specific ideas
61 time
62 triangle
63 triangulation
64 schema:name Autonomous Parking Using Previous Paths
65 schema:pagination 3-14
66 schema:productId N3cb8cd3dd49d4ea5a0a48cfc241fc46f
67 N6b69d6afce1f4ba99619a756dad86274
68 schema:publisher N639401c0fb884b1d9cad240b5815156f
69 schema:sameAs https://app.dimensions.ai/details/publication/pub.1039644420
70 https://doi.org/10.1007/978-3-319-20855-8_1
71 schema:sdDatePublished 2022-11-24T21:14
72 schema:sdLicense https://scigraph.springernature.com/explorer/license/
73 schema:sdPublisher Nd7a68155cdcb4463b3dadc2e35dabe01
74 schema:url https://doi.org/10.1007/978-3-319-20855-8_1
75 sgo:license sg:explorer/license/
76 sgo:sdDataset chapters
77 rdf:type schema:Chapter
78 N05fae1d0cc4f48ed8b6fc813cd66221b schema:affiliation grid-institutes:grid.5433.1
79 schema:familyName Krastev
80 schema:givenName Boris
81 rdf:type schema:Person
82 N245a52f7b71048f195c0f0f416d3fc53 rdf:first N6210924f12b84a19b7238b35be752765
83 rdf:rest Naff6df0f915c4502920923a3fb7d5fe5
84 N2fbcff4539cc4ac796b7104234b7f181 schema:familyName Schulze
85 schema:givenName Tim
86 rdf:type schema:Person
87 N310986812e734768bac6c5ac5637e35a schema:affiliation grid-institutes:grid.5433.1
88 schema:familyName Siedentop
89 schema:givenName Christoph
90 rdf:type schema:Person
91 N38e6042954ee4d7f980d843d1019d49f rdf:first sg:person.016640157206.58
92 rdf:rest N9c2d38276bb442f8a0d65d7d854d886b
93 N3cb8cd3dd49d4ea5a0a48cfc241fc46f schema:name doi
94 schema:value 10.1007/978-3-319-20855-8_1
95 rdf:type schema:PropertyValue
96 N4dc34ff03154492484a0af7cec368b12 rdf:first sg:person.014403300435.29
97 rdf:rest N38e6042954ee4d7f980d843d1019d49f
98 N6210924f12b84a19b7238b35be752765 schema:familyName Müller
99 schema:givenName Beate
100 rdf:type schema:Person
101 N639401c0fb884b1d9cad240b5815156f schema:name Springer Nature
102 rdf:type schema:Organisation
103 N6b69d6afce1f4ba99619a756dad86274 schema:name dimensions_id
104 schema:value pub.1039644420
105 rdf:type schema:PropertyValue
106 N6f17986d408b4db79ce61f89ede68dc5 schema:affiliation grid-institutes:grid.5433.1
107 schema:familyName Laukart
108 schema:givenName Viktor
109 rdf:type schema:Person
110 N97d8aea3257d42cd8a2a88d2c66f3980 rdf:first N2fbcff4539cc4ac796b7104234b7f181
111 rdf:rest N245a52f7b71048f195c0f0f416d3fc53
112 N9c2d38276bb442f8a0d65d7d854d886b rdf:first sg:person.011366060155.51
113 rdf:rest Nf78e293255474bd1a8b27a90a3442ada
114 Na71de8ab63b747cfaabd8120e4ed2543 schema:familyName Meyer
115 schema:givenName Gereon
116 rdf:type schema:Person
117 Naff6df0f915c4502920923a3fb7d5fe5 rdf:first Na71de8ab63b747cfaabd8120e4ed2543
118 rdf:rest rdf:nil
119 Ncb8e7062f4b140ae9b21efb2a2fe5cab rdf:first N6f17986d408b4db79ce61f89ede68dc5
120 rdf:rest Nf720aee774604ecb80e63ea9988bee78
121 Nd7a68155cdcb4463b3dadc2e35dabe01 schema:name Springer Nature - SN SciGraph project
122 rdf:type schema:Organization
123 Nda14b05b35d04fe79f633a695c10409a rdf:first N310986812e734768bac6c5ac5637e35a
124 rdf:rest Ncb8e7062f4b140ae9b21efb2a2fe5cab
125 Nf720aee774604ecb80e63ea9988bee78 rdf:first N05fae1d0cc4f48ed8b6fc813cd66221b
126 rdf:rest N4dc34ff03154492484a0af7cec368b12
127 Nf78e293255474bd1a8b27a90a3442ada rdf:first sg:person.015152144445.37
128 rdf:rest rdf:nil
129 Nf8927f7a8f3640218d613a28ac3458dd schema:isbn 978-3-319-20854-1
130 978-3-319-20855-8
131 schema:name Advanced Microsystems for Automotive Applications 2015
132 rdf:type schema:Book
133 anzsrc-for:08 schema:inDefinedTermSet anzsrc-for:
134 schema:name Information and Computing Sciences
135 rdf:type schema:DefinedTerm
136 anzsrc-for:0801 schema:inDefinedTermSet anzsrc-for:
137 schema:name Artificial Intelligence and Image Processing
138 rdf:type schema:DefinedTerm
139 sg:person.011366060155.51 schema:affiliation grid-institutes:grid.5433.1
140 schema:familyName Breuel
141 schema:givenName Gabi
142 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011366060155.51
143 rdf:type schema:Person
144 sg:person.014403300435.29 schema:affiliation grid-institutes:grid.5433.1
145 schema:familyName Kasper
146 schema:givenName Dietmar
147 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014403300435.29
148 rdf:type schema:Person
149 sg:person.015152144445.37 schema:affiliation grid-institutes:grid.10388.32
150 schema:familyName Stachniss
151 schema:givenName Cyrill
152 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015152144445.37
153 rdf:type schema:Person
154 sg:person.016640157206.58 schema:affiliation grid-institutes:grid.5433.1
155 schema:familyName Wedel
156 schema:givenName Andreas
157 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016640157206.58
158 rdf:type schema:Person
159 grid-institutes:grid.10388.32 schema:alternateName Institute for Geodesy and Geoinformation, University of Bonn, Nussallee 15, 53115, Bonn, Germany
160 schema:name Institute for Geodesy and Geoinformation, University of Bonn, Nussallee 15, 53115, Bonn, Germany
161 rdf:type schema:Organization
162 grid-institutes:grid.5433.1 schema:alternateName Daimler AG, Autonomous Driving, HPC G023, 71059, Sindelfingen, Germany
163 schema:name Daimler AG, Autonomous Driving, HPC G023, 71059, Sindelfingen, Germany
164 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...