Road Detection in Urban Areas Using Random Forest Tree-Based Ensemble Classification View Full Text


Ontology type: schema:Chapter     


Chapter Info

DATE

2015

AUTHORS

Safaa M. Bedawi , Mohamed S. Kamel

ABSTRACT

The rapid growth in using remote sensing data highlights the need to have computationally efficient geospatial analysis available in order to semantically interpret and rapidly update current geospatial databases. Object identification and extraction in urban areas is a challenging problem and it becomes even more so when very high-resolution data, such as aerial images, are used. In this paper, we use Random Forest Classifier tree based ensemble to enhance the extracting accuracy for roads from very dense urban areas from aerial images. Both the spatial and the spectral features of the data are used for pre-classification and classification. Comparisons are made between the RF ensemble and other ensembles of statistic classifiers and neural networks. The proposed method is tested to aerial and satellite imagery of an urban area. The result shows that the RF ensemble enhances the overall classification accuracy for roads by 8 %. Also, it demonstrates that the approach is viable for large datasets due to its faster computational time performance in comparison to other ensembles. More... »

PAGES

499-505

Book

TITLE

Image Analysis and Recognition

ISBN

978-3-319-20800-8
978-3-319-20801-5

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/978-3-319-20801-5_55

DOI

http://dx.doi.org/10.1007/978-3-319-20801-5_55

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1037282802


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0909", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Geomatic Engineering", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/09", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Engineering", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "National Authority for Remote Sensing and Space Sciences", 
          "id": "https://www.grid.ac/institutes/grid.436946.a", 
          "name": [
            "National Authority for Remote Sensing and Space Sciences", 
            "Center of Pattern Analysis and Machine Intelligence"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Bedawi", 
        "givenName": "Safaa M.", 
        "id": "sg:person.014172237775.62", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014172237775.62"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "name": [
            "Center of Pattern Analysis and Machine Intelligence"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Kamel", 
        "givenName": "Mohamed S.", 
        "id": "sg:person.01133760566.26", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01133760566.26"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1007/978-3-642-12304-7_45", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1009223273", 
          "https://doi.org/10.1007/978-3-642-12304-7_45"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-3-642-12304-7_45", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1009223273", 
          "https://doi.org/10.1007/978-3-642-12304-7_45"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.5589/m09-018", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1010719574"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-3-642-02326-2_6", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1016389734", 
          "https://doi.org/10.1007/978-3-642-02326-2_6"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-3-642-02326-2_6", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1016389734", 
          "https://doi.org/10.1007/978-3-642-02326-2_6"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-3-642-13772-3_9", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1021851506", 
          "https://doi.org/10.1007/978-3-642-13772-3_9"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-3-642-13772-3_9", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1021851506", 
          "https://doi.org/10.1007/978-3-642-13772-3_9"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1023/a:1010933404324", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1024739340", 
          "https://doi.org/10.1023/a:1010933404324"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.14358/pers.75.6.679", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1028944045"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.isprsjprs.2007.08.008", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1037727945"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-3-540-72523-7_50", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1039128549", 
          "https://doi.org/10.1007/978-3-540-72523-7_50"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1080/01431160600746456", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1041894571"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.isprsjprs.2003.09.002", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1044601598"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1080/10106048709354126", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1046489686"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0262-8856(01)00045-2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1051084918"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/tgrs.2002.1006354", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061608518"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/tgrs.2007.892009", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061610093"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/0471660264", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1098661458"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/0471660264", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1098661458"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2015", 
    "datePublishedReg": "2015-01-01", 
    "description": "The rapid growth in using remote sensing data highlights the need to have computationally efficient geospatial analysis available in order to semantically interpret and rapidly update current geospatial databases. Object identification and extraction in urban areas is a challenging problem and it becomes even more so when very high-resolution data, such as aerial images, are used. In this paper, we use Random Forest Classifier tree based ensemble to enhance the extracting accuracy for roads from very dense urban areas from aerial images. Both the spatial and the spectral features of the data are used for pre-classification and classification. Comparisons are made between the RF ensemble and other ensembles of statistic classifiers and neural networks. The proposed method is tested to aerial and satellite imagery of an urban area. The result shows that the RF ensemble enhances the overall classification accuracy for roads by 8\u00a0%. Also, it demonstrates that the approach is viable for large datasets due to its faster computational time performance in comparison to other ensembles.", 
    "editor": [
      {
        "familyName": "Kamel", 
        "givenName": "Mohamed", 
        "type": "Person"
      }, 
      {
        "familyName": "Campilho", 
        "givenName": "Aur\u00e9lio", 
        "type": "Person"
      }
    ], 
    "genre": "chapter", 
    "id": "sg:pub.10.1007/978-3-319-20801-5_55", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": {
      "isbn": [
        "978-3-319-20800-8", 
        "978-3-319-20801-5"
      ], 
      "name": "Image Analysis and Recognition", 
      "type": "Book"
    }, 
    "name": "Road Detection in Urban Areas Using Random Forest Tree-Based Ensemble Classification", 
    "pagination": "499-505", 
    "productId": [
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/978-3-319-20801-5_55"
        ]
      }, 
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "b19a6a3af88b1fd3bdf3b7a9ce7b9ea6a5048ee86de76d6e5e0e1124b5eeda8d"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1037282802"
        ]
      }
    ], 
    "publisher": {
      "location": "Cham", 
      "name": "Springer International Publishing", 
      "type": "Organisation"
    }, 
    "sameAs": [
      "https://doi.org/10.1007/978-3-319-20801-5_55", 
      "https://app.dimensions.ai/details/publication/pub.1037282802"
    ], 
    "sdDataset": "chapters", 
    "sdDatePublished": "2019-04-15T18:12", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8681_00000266.jsonl", 
    "type": "Chapter", 
    "url": "http://link.springer.com/10.1007/978-3-319-20801-5_55"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/978-3-319-20801-5_55'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/978-3-319-20801-5_55'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/978-3-319-20801-5_55'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/978-3-319-20801-5_55'


 

This table displays all metadata directly associated to this object as RDF triples.

130 TRIPLES      23 PREDICATES      42 URIs      20 LITERALS      8 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/978-3-319-20801-5_55 schema:about anzsrc-for:09
2 anzsrc-for:0909
3 schema:author Ne7a25b0ef67c4d7eb10798d4abc7bdf4
4 schema:citation sg:pub.10.1007/978-3-540-72523-7_50
5 sg:pub.10.1007/978-3-642-02326-2_6
6 sg:pub.10.1007/978-3-642-12304-7_45
7 sg:pub.10.1007/978-3-642-13772-3_9
8 sg:pub.10.1023/a:1010933404324
9 https://doi.org/10.1002/0471660264
10 https://doi.org/10.1016/j.isprsjprs.2003.09.002
11 https://doi.org/10.1016/j.isprsjprs.2007.08.008
12 https://doi.org/10.1016/s0262-8856(01)00045-2
13 https://doi.org/10.1080/01431160600746456
14 https://doi.org/10.1080/10106048709354126
15 https://doi.org/10.1109/tgrs.2002.1006354
16 https://doi.org/10.1109/tgrs.2007.892009
17 https://doi.org/10.14358/pers.75.6.679
18 https://doi.org/10.5589/m09-018
19 schema:datePublished 2015
20 schema:datePublishedReg 2015-01-01
21 schema:description The rapid growth in using remote sensing data highlights the need to have computationally efficient geospatial analysis available in order to semantically interpret and rapidly update current geospatial databases. Object identification and extraction in urban areas is a challenging problem and it becomes even more so when very high-resolution data, such as aerial images, are used. In this paper, we use Random Forest Classifier tree based ensemble to enhance the extracting accuracy for roads from very dense urban areas from aerial images. Both the spatial and the spectral features of the data are used for pre-classification and classification. Comparisons are made between the RF ensemble and other ensembles of statistic classifiers and neural networks. The proposed method is tested to aerial and satellite imagery of an urban area. The result shows that the RF ensemble enhances the overall classification accuracy for roads by 8 %. Also, it demonstrates that the approach is viable for large datasets due to its faster computational time performance in comparison to other ensembles.
22 schema:editor Nf0fcb0b55f9b415594411a1ea9d2a511
23 schema:genre chapter
24 schema:inLanguage en
25 schema:isAccessibleForFree false
26 schema:isPartOf N09de993b56684a7b9c88e690b59dd9df
27 schema:name Road Detection in Urban Areas Using Random Forest Tree-Based Ensemble Classification
28 schema:pagination 499-505
29 schema:productId N3c439075ba5e407587a578a4bf812175
30 Nab8ad5a751e64f05942b62ee43abb5ce
31 Nc8f6756ae642488997b59f780e454269
32 schema:publisher Nc9a654d9b7d6465090abb12f8ebb3728
33 schema:sameAs https://app.dimensions.ai/details/publication/pub.1037282802
34 https://doi.org/10.1007/978-3-319-20801-5_55
35 schema:sdDatePublished 2019-04-15T18:12
36 schema:sdLicense https://scigraph.springernature.com/explorer/license/
37 schema:sdPublisher N3353311c796d4918846ccdeadb8cc5d7
38 schema:url http://link.springer.com/10.1007/978-3-319-20801-5_55
39 sgo:license sg:explorer/license/
40 sgo:sdDataset chapters
41 rdf:type schema:Chapter
42 N09de993b56684a7b9c88e690b59dd9df schema:isbn 978-3-319-20800-8
43 978-3-319-20801-5
44 schema:name Image Analysis and Recognition
45 rdf:type schema:Book
46 N3353311c796d4918846ccdeadb8cc5d7 schema:name Springer Nature - SN SciGraph project
47 rdf:type schema:Organization
48 N3c439075ba5e407587a578a4bf812175 schema:name doi
49 schema:value 10.1007/978-3-319-20801-5_55
50 rdf:type schema:PropertyValue
51 N75848c9d7aca433893898b76bdc1e257 rdf:first Nc29e9279f86246f28dd87ec75190d4f7
52 rdf:rest rdf:nil
53 N84fbc3e5e80f41169b5112043c8abc3b rdf:first sg:person.01133760566.26
54 rdf:rest rdf:nil
55 Nab8ad5a751e64f05942b62ee43abb5ce schema:name readcube_id
56 schema:value b19a6a3af88b1fd3bdf3b7a9ce7b9ea6a5048ee86de76d6e5e0e1124b5eeda8d
57 rdf:type schema:PropertyValue
58 Nb69656e034e24772b1a57379221abeb8 schema:familyName Kamel
59 schema:givenName Mohamed
60 rdf:type schema:Person
61 Nc29e9279f86246f28dd87ec75190d4f7 schema:familyName Campilho
62 schema:givenName Aurélio
63 rdf:type schema:Person
64 Nc8f6756ae642488997b59f780e454269 schema:name dimensions_id
65 schema:value pub.1037282802
66 rdf:type schema:PropertyValue
67 Nc9a654d9b7d6465090abb12f8ebb3728 schema:location Cham
68 schema:name Springer International Publishing
69 rdf:type schema:Organisation
70 Ne7a25b0ef67c4d7eb10798d4abc7bdf4 rdf:first sg:person.014172237775.62
71 rdf:rest N84fbc3e5e80f41169b5112043c8abc3b
72 Nf0fcb0b55f9b415594411a1ea9d2a511 rdf:first Nb69656e034e24772b1a57379221abeb8
73 rdf:rest N75848c9d7aca433893898b76bdc1e257
74 Nf21780d55ea74259a80e0a801bc42036 schema:name Center of Pattern Analysis and Machine Intelligence
75 rdf:type schema:Organization
76 anzsrc-for:09 schema:inDefinedTermSet anzsrc-for:
77 schema:name Engineering
78 rdf:type schema:DefinedTerm
79 anzsrc-for:0909 schema:inDefinedTermSet anzsrc-for:
80 schema:name Geomatic Engineering
81 rdf:type schema:DefinedTerm
82 sg:person.01133760566.26 schema:affiliation Nf21780d55ea74259a80e0a801bc42036
83 schema:familyName Kamel
84 schema:givenName Mohamed S.
85 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01133760566.26
86 rdf:type schema:Person
87 sg:person.014172237775.62 schema:affiliation https://www.grid.ac/institutes/grid.436946.a
88 schema:familyName Bedawi
89 schema:givenName Safaa M.
90 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014172237775.62
91 rdf:type schema:Person
92 sg:pub.10.1007/978-3-540-72523-7_50 schema:sameAs https://app.dimensions.ai/details/publication/pub.1039128549
93 https://doi.org/10.1007/978-3-540-72523-7_50
94 rdf:type schema:CreativeWork
95 sg:pub.10.1007/978-3-642-02326-2_6 schema:sameAs https://app.dimensions.ai/details/publication/pub.1016389734
96 https://doi.org/10.1007/978-3-642-02326-2_6
97 rdf:type schema:CreativeWork
98 sg:pub.10.1007/978-3-642-12304-7_45 schema:sameAs https://app.dimensions.ai/details/publication/pub.1009223273
99 https://doi.org/10.1007/978-3-642-12304-7_45
100 rdf:type schema:CreativeWork
101 sg:pub.10.1007/978-3-642-13772-3_9 schema:sameAs https://app.dimensions.ai/details/publication/pub.1021851506
102 https://doi.org/10.1007/978-3-642-13772-3_9
103 rdf:type schema:CreativeWork
104 sg:pub.10.1023/a:1010933404324 schema:sameAs https://app.dimensions.ai/details/publication/pub.1024739340
105 https://doi.org/10.1023/a:1010933404324
106 rdf:type schema:CreativeWork
107 https://doi.org/10.1002/0471660264 schema:sameAs https://app.dimensions.ai/details/publication/pub.1098661458
108 rdf:type schema:CreativeWork
109 https://doi.org/10.1016/j.isprsjprs.2003.09.002 schema:sameAs https://app.dimensions.ai/details/publication/pub.1044601598
110 rdf:type schema:CreativeWork
111 https://doi.org/10.1016/j.isprsjprs.2007.08.008 schema:sameAs https://app.dimensions.ai/details/publication/pub.1037727945
112 rdf:type schema:CreativeWork
113 https://doi.org/10.1016/s0262-8856(01)00045-2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1051084918
114 rdf:type schema:CreativeWork
115 https://doi.org/10.1080/01431160600746456 schema:sameAs https://app.dimensions.ai/details/publication/pub.1041894571
116 rdf:type schema:CreativeWork
117 https://doi.org/10.1080/10106048709354126 schema:sameAs https://app.dimensions.ai/details/publication/pub.1046489686
118 rdf:type schema:CreativeWork
119 https://doi.org/10.1109/tgrs.2002.1006354 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061608518
120 rdf:type schema:CreativeWork
121 https://doi.org/10.1109/tgrs.2007.892009 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061610093
122 rdf:type schema:CreativeWork
123 https://doi.org/10.14358/pers.75.6.679 schema:sameAs https://app.dimensions.ai/details/publication/pub.1028944045
124 rdf:type schema:CreativeWork
125 https://doi.org/10.5589/m09-018 schema:sameAs https://app.dimensions.ai/details/publication/pub.1010719574
126 rdf:type schema:CreativeWork
127 https://www.grid.ac/institutes/grid.436946.a schema:alternateName National Authority for Remote Sensing and Space Sciences
128 schema:name Center of Pattern Analysis and Machine Intelligence
129 National Authority for Remote Sensing and Space Sciences
130 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...