The Effective Equation Method View Full Text


Ontology type: schema:Chapter      Open Access: True


Chapter Info

DATE

2016

AUTHORS

Sergei Kuksin , Alberto Maiocchi

ABSTRACT

In this chapter we present a general method of constructing the effective equation which describes the behavior of small-amplitude solutions for a nonlinear PDE in finite volume, provided that the linear part of the equation is a hamiltonian system with a pure imaginary discrete spectrum. The effective equation is obtained by retaining only the resonant terms of the nonlinearity (which may be hamiltonian, or may be not); the assertion that it describes the limiting behavior of small-amplitude solutions is a rigorous mathematical theorem. In particular, the method applies to the three- and four-wave systems. We demonstrate that different possible types of energy transport are covered by this method, depending on whether the set of resonances splits into finite clusters (this happens, e.g. in case of the Charney-Hasegawa-Mima equation), or is connected (this happens, e.g. in the case of the NLS equation if the space-dimension is at least two). For equations of the first type the energy transition to high frequencies does not hold, while for equations of the second type it may take place. Our method applies to various weakly nonlinear wave systems, appearing in plasma, meteorology and oceanography. More... »

PAGES

21-41

Book

TITLE

New Approaches to Nonlinear Waves

ISBN

978-3-319-20689-9
978-3-319-20690-5

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/978-3-319-20690-5_2

DOI

http://dx.doi.org/10.1007/978-3-319-20690-5_2

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1025092430


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0101", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Pure Mathematics", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/01", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Mathematical Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Paris Diderot University", 
          "id": "https://www.grid.ac/institutes/grid.7452.4", 
          "name": [
            "CNRS and I.M.J, Universit\u00e9 Paris-Diderot"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Kuksin", 
        "givenName": "Sergei", 
        "id": "sg:person.014373033154.55", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014373033154.55"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of Milan", 
          "id": "https://www.grid.ac/institutes/grid.4708.b", 
          "name": [
            "Dipartimento di Matematica, Universit\u00e0 degli Studi di Milano"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Maiocchi", 
        "givenName": "Alberto", 
        "id": "sg:person.015366730074.31", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015366730074.31"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1007/s00039-010-0103-6", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1010099977", 
          "https://doi.org/10.1007/s00039-010-0103-6"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00039-010-0103-6", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1010099977", 
          "https://doi.org/10.1007/s00039-010-0103-6"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://app.dimensions.ai/details/publication/pub.1016659354", 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://app.dimensions.ai/details/publication/pub.1016659354", 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0167-2789(90)90112-3", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1024024340"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0167-2789(90)90112-3", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1024024340"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-1-4939-2950-4_11", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1036158147", 
          "https://doi.org/10.1007/978-1-4939-2950-4_11"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1146/annurev-fluid-122109-160807", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1039805561"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://app.dimensions.ai/details/publication/pub.1048286716", 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-3-642-50052-7", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1048286716", 
          "https://doi.org/10.1007/978-3-642-50052-7"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-3-642-50052-7", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1048286716", 
          "https://doi.org/10.1007/978-3-642-50052-7"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1088/0951-7715/28/7/2319", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1059110441"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1090/jams/845", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1059342403"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1214/11-aihp482", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1064392133"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.2140/apde.2012.5.1139", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1069059395"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.3934/dcds.2014.34.3555", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1071735006"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1017/cbo9780511812149", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1098668177"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1017/cbo9780511779046", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1098742324"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2016", 
    "datePublishedReg": "2016-01-01", 
    "description": "In this chapter we present a general method of constructing the effective equation which describes the behavior of small-amplitude solutions for a nonlinear PDE in finite volume, provided that the linear part of the equation is a hamiltonian system with a pure imaginary discrete spectrum. The effective equation is obtained by retaining only the resonant terms of the nonlinearity (which may be hamiltonian, or may be not); the assertion that it describes the limiting behavior of small-amplitude solutions is a rigorous mathematical theorem. In particular, the method applies to the three- and four-wave systems. We demonstrate that different possible types of energy transport are covered by this method, depending on whether the set of resonances splits into finite clusters (this happens, e.g. in case of the Charney-Hasegawa-Mima equation), or is connected (this happens, e.g. in the case of the NLS equation if the space-dimension is at least two). For equations of the first type the energy transition to high frequencies does not hold, while for equations of the second type it may take place. Our method applies to various weakly nonlinear wave systems, appearing in plasma, meteorology and oceanography.", 
    "editor": [
      {
        "familyName": "Tobisch", 
        "givenName": "Elena", 
        "type": "Person"
      }
    ], 
    "genre": "chapter", 
    "id": "sg:pub.10.1007/978-3-319-20690-5_2", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": true, 
    "isPartOf": {
      "isbn": [
        "978-3-319-20689-9", 
        "978-3-319-20690-5"
      ], 
      "name": "New Approaches to Nonlinear Waves", 
      "type": "Book"
    }, 
    "name": "The Effective Equation Method", 
    "pagination": "21-41", 
    "productId": [
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/978-3-319-20690-5_2"
        ]
      }, 
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "778a547873d1ebcca242679e0d63921027905b9a5b1a8efb6d755431cb8b7f41"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1025092430"
        ]
      }
    ], 
    "publisher": {
      "location": "Cham", 
      "name": "Springer International Publishing", 
      "type": "Organisation"
    }, 
    "sameAs": [
      "https://doi.org/10.1007/978-3-319-20690-5_2", 
      "https://app.dimensions.ai/details/publication/pub.1025092430"
    ], 
    "sdDataset": "chapters", 
    "sdDatePublished": "2019-04-15T20:05", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8687_00000258.jsonl", 
    "type": "Chapter", 
    "url": "http://link.springer.com/10.1007/978-3-319-20690-5_2"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/978-3-319-20690-5_2'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/978-3-319-20690-5_2'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/978-3-319-20690-5_2'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/978-3-319-20690-5_2'


 

This table displays all metadata directly associated to this object as RDF triples.

118 TRIPLES      23 PREDICATES      41 URIs      20 LITERALS      8 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/978-3-319-20690-5_2 schema:about anzsrc-for:01
2 anzsrc-for:0101
3 schema:author N28b7f366c14f46898200ba4d86074047
4 schema:citation sg:pub.10.1007/978-1-4939-2950-4_11
5 sg:pub.10.1007/978-3-642-50052-7
6 sg:pub.10.1007/s00039-010-0103-6
7 https://app.dimensions.ai/details/publication/pub.1016659354
8 https://app.dimensions.ai/details/publication/pub.1048286716
9 https://doi.org/10.1016/0167-2789(90)90112-3
10 https://doi.org/10.1017/cbo9780511779046
11 https://doi.org/10.1017/cbo9780511812149
12 https://doi.org/10.1088/0951-7715/28/7/2319
13 https://doi.org/10.1090/jams/845
14 https://doi.org/10.1146/annurev-fluid-122109-160807
15 https://doi.org/10.1214/11-aihp482
16 https://doi.org/10.2140/apde.2012.5.1139
17 https://doi.org/10.3934/dcds.2014.34.3555
18 schema:datePublished 2016
19 schema:datePublishedReg 2016-01-01
20 schema:description In this chapter we present a general method of constructing the effective equation which describes the behavior of small-amplitude solutions for a nonlinear PDE in finite volume, provided that the linear part of the equation is a hamiltonian system with a pure imaginary discrete spectrum. The effective equation is obtained by retaining only the resonant terms of the nonlinearity (which may be hamiltonian, or may be not); the assertion that it describes the limiting behavior of small-amplitude solutions is a rigorous mathematical theorem. In particular, the method applies to the three- and four-wave systems. We demonstrate that different possible types of energy transport are covered by this method, depending on whether the set of resonances splits into finite clusters (this happens, e.g. in case of the Charney-Hasegawa-Mima equation), or is connected (this happens, e.g. in the case of the NLS equation if the space-dimension is at least two). For equations of the first type the energy transition to high frequencies does not hold, while for equations of the second type it may take place. Our method applies to various weakly nonlinear wave systems, appearing in plasma, meteorology and oceanography.
21 schema:editor N426b153f0b1f46bf8ce82f019ce05e3e
22 schema:genre chapter
23 schema:inLanguage en
24 schema:isAccessibleForFree true
25 schema:isPartOf Nd2ca68ced91b4212898b24c746a6cc40
26 schema:name The Effective Equation Method
27 schema:pagination 21-41
28 schema:productId N26268dae1b6a4f18ba4fe2171fe9d25c
29 N545ff95510e245d194aa2059ad28a154
30 Nabf627391d17418d8b0d69e75dc83005
31 schema:publisher Ne198a402fe59407ba9410ec1c2092544
32 schema:sameAs https://app.dimensions.ai/details/publication/pub.1025092430
33 https://doi.org/10.1007/978-3-319-20690-5_2
34 schema:sdDatePublished 2019-04-15T20:05
35 schema:sdLicense https://scigraph.springernature.com/explorer/license/
36 schema:sdPublisher N680afc44029d47ffa84585294b3de8ff
37 schema:url http://link.springer.com/10.1007/978-3-319-20690-5_2
38 sgo:license sg:explorer/license/
39 sgo:sdDataset chapters
40 rdf:type schema:Chapter
41 N26268dae1b6a4f18ba4fe2171fe9d25c schema:name dimensions_id
42 schema:value pub.1025092430
43 rdf:type schema:PropertyValue
44 N28b7f366c14f46898200ba4d86074047 rdf:first sg:person.014373033154.55
45 rdf:rest N84776bec4be74560a473b25b9388a4e3
46 N426b153f0b1f46bf8ce82f019ce05e3e rdf:first Nf43244dc23c7428facb9bda1003463af
47 rdf:rest rdf:nil
48 N545ff95510e245d194aa2059ad28a154 schema:name doi
49 schema:value 10.1007/978-3-319-20690-5_2
50 rdf:type schema:PropertyValue
51 N680afc44029d47ffa84585294b3de8ff schema:name Springer Nature - SN SciGraph project
52 rdf:type schema:Organization
53 N84776bec4be74560a473b25b9388a4e3 rdf:first sg:person.015366730074.31
54 rdf:rest rdf:nil
55 Nabf627391d17418d8b0d69e75dc83005 schema:name readcube_id
56 schema:value 778a547873d1ebcca242679e0d63921027905b9a5b1a8efb6d755431cb8b7f41
57 rdf:type schema:PropertyValue
58 Nd2ca68ced91b4212898b24c746a6cc40 schema:isbn 978-3-319-20689-9
59 978-3-319-20690-5
60 schema:name New Approaches to Nonlinear Waves
61 rdf:type schema:Book
62 Ne198a402fe59407ba9410ec1c2092544 schema:location Cham
63 schema:name Springer International Publishing
64 rdf:type schema:Organisation
65 Nf43244dc23c7428facb9bda1003463af schema:familyName Tobisch
66 schema:givenName Elena
67 rdf:type schema:Person
68 anzsrc-for:01 schema:inDefinedTermSet anzsrc-for:
69 schema:name Mathematical Sciences
70 rdf:type schema:DefinedTerm
71 anzsrc-for:0101 schema:inDefinedTermSet anzsrc-for:
72 schema:name Pure Mathematics
73 rdf:type schema:DefinedTerm
74 sg:person.014373033154.55 schema:affiliation https://www.grid.ac/institutes/grid.7452.4
75 schema:familyName Kuksin
76 schema:givenName Sergei
77 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014373033154.55
78 rdf:type schema:Person
79 sg:person.015366730074.31 schema:affiliation https://www.grid.ac/institutes/grid.4708.b
80 schema:familyName Maiocchi
81 schema:givenName Alberto
82 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015366730074.31
83 rdf:type schema:Person
84 sg:pub.10.1007/978-1-4939-2950-4_11 schema:sameAs https://app.dimensions.ai/details/publication/pub.1036158147
85 https://doi.org/10.1007/978-1-4939-2950-4_11
86 rdf:type schema:CreativeWork
87 sg:pub.10.1007/978-3-642-50052-7 schema:sameAs https://app.dimensions.ai/details/publication/pub.1048286716
88 https://doi.org/10.1007/978-3-642-50052-7
89 rdf:type schema:CreativeWork
90 sg:pub.10.1007/s00039-010-0103-6 schema:sameAs https://app.dimensions.ai/details/publication/pub.1010099977
91 https://doi.org/10.1007/s00039-010-0103-6
92 rdf:type schema:CreativeWork
93 https://app.dimensions.ai/details/publication/pub.1016659354 schema:CreativeWork
94 https://app.dimensions.ai/details/publication/pub.1048286716 schema:CreativeWork
95 https://doi.org/10.1016/0167-2789(90)90112-3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1024024340
96 rdf:type schema:CreativeWork
97 https://doi.org/10.1017/cbo9780511779046 schema:sameAs https://app.dimensions.ai/details/publication/pub.1098742324
98 rdf:type schema:CreativeWork
99 https://doi.org/10.1017/cbo9780511812149 schema:sameAs https://app.dimensions.ai/details/publication/pub.1098668177
100 rdf:type schema:CreativeWork
101 https://doi.org/10.1088/0951-7715/28/7/2319 schema:sameAs https://app.dimensions.ai/details/publication/pub.1059110441
102 rdf:type schema:CreativeWork
103 https://doi.org/10.1090/jams/845 schema:sameAs https://app.dimensions.ai/details/publication/pub.1059342403
104 rdf:type schema:CreativeWork
105 https://doi.org/10.1146/annurev-fluid-122109-160807 schema:sameAs https://app.dimensions.ai/details/publication/pub.1039805561
106 rdf:type schema:CreativeWork
107 https://doi.org/10.1214/11-aihp482 schema:sameAs https://app.dimensions.ai/details/publication/pub.1064392133
108 rdf:type schema:CreativeWork
109 https://doi.org/10.2140/apde.2012.5.1139 schema:sameAs https://app.dimensions.ai/details/publication/pub.1069059395
110 rdf:type schema:CreativeWork
111 https://doi.org/10.3934/dcds.2014.34.3555 schema:sameAs https://app.dimensions.ai/details/publication/pub.1071735006
112 rdf:type schema:CreativeWork
113 https://www.grid.ac/institutes/grid.4708.b schema:alternateName University of Milan
114 schema:name Dipartimento di Matematica, Università degli Studi di Milano
115 rdf:type schema:Organization
116 https://www.grid.ac/institutes/grid.7452.4 schema:alternateName Paris Diderot University
117 schema:name CNRS and I.M.J, Université Paris-Diderot
118 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...