Metabolic Analysis of Sulfur Metabolism During Leaf Senescence View Full Text


Ontology type: schema:Chapter     


Chapter Info

DATE

2015

AUTHORS

Mutsumi Watanabe , Rainer Hoefgen

ABSTRACT

Plants have a constitutive demand for sulfur to synthesize sulfur-containing amino acids, numerous essential metabolites and secondary metabolites for growth and development. Leaf senescence in plants is a highly coordinated physiological process and is critical for nutrient redistribution from senescing leaves to newly formed organs including developing seeds which act as sinks. In order to study the metabolism and recycling of sulfur-containing compounds during leaf senescence, we analyzed the changes of sulfur-containing metabolites using the model plant Arabidopsis thaliana. More... »

PAGES

99-105

Book

TITLE

Molecular Physiology and Ecophysiology of Sulfur

ISBN

978-3-319-20136-8
978-3-319-20137-5

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/978-3-319-20137-5_10

DOI

http://dx.doi.org/10.1007/978-3-319-20137-5_10

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1053485888


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/06", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Biological Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0607", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Plant Biology", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Max Planck Institute of Molecular Plant Physiology, Am Muehlenberg 1, 14476, Potsdam-Golm, Germany", 
          "id": "http://www.grid.ac/institutes/grid.418390.7", 
          "name": [
            "Max Planck Institute of Molecular Plant Physiology, Am Muehlenberg 1, 14476, Potsdam-Golm, Germany"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Watanabe", 
        "givenName": "Mutsumi", 
        "id": "sg:person.01103653720.68", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01103653720.68"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Max Planck Institute of Molecular Plant Physiology, Am Muehlenberg 1, 14476, Potsdam-Golm, Germany", 
          "id": "http://www.grid.ac/institutes/grid.418390.7", 
          "name": [
            "Max Planck Institute of Molecular Plant Physiology, Am Muehlenberg 1, 14476, Potsdam-Golm, Germany"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Hoefgen", 
        "givenName": "Rainer", 
        "id": "sg:person.01030207204.90", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01030207204.90"
        ], 
        "type": "Person"
      }
    ], 
    "datePublished": "2015", 
    "datePublishedReg": "2015-01-01", 
    "description": "Plants have a constitutive demand for sulfur to synthesize sulfur-containing amino acids, numerous essential metabolites and secondary metabolites for growth and development. Leaf senescence in plants is a highly coordinated physiological process and is critical for nutrient redistribution from senescing leaves to newly formed organs including developing seeds which act as sinks. In order to study the metabolism and recycling of sulfur-containing compounds during leaf senescence, we analyzed the changes of sulfur-containing metabolites using the model plant Arabidopsis thaliana.", 
    "editor": [
      {
        "familyName": "De Kok", 
        "givenName": "Luit J.", 
        "type": "Person"
      }, 
      {
        "familyName": "Hawkesford", 
        "givenName": "Malcolm J.", 
        "type": "Person"
      }, 
      {
        "familyName": "Rennenberg", 
        "givenName": "Heinz", 
        "type": "Person"
      }, 
      {
        "familyName": "Saito", 
        "givenName": "Kazuki", 
        "type": "Person"
      }, 
      {
        "familyName": "Schnug", 
        "givenName": "Ewald", 
        "type": "Person"
      }
    ], 
    "genre": "chapter", 
    "id": "sg:pub.10.1007/978-3-319-20137-5_10", 
    "isAccessibleForFree": false, 
    "isPartOf": {
      "isbn": [
        "978-3-319-20136-8", 
        "978-3-319-20137-5"
      ], 
      "name": "Molecular Physiology and Ecophysiology of Sulfur", 
      "type": "Book"
    }, 
    "keywords": [
      "leaf senescence", 
      "model plant Arabidopsis", 
      "plant Arabidopsis", 
      "sulfur-containing amino acids", 
      "sulfur metabolism", 
      "essential metabolites", 
      "sulfur-containing metabolites", 
      "physiological processes", 
      "secondary metabolites", 
      "nutrient redistribution", 
      "metabolic analysis", 
      "amino acids", 
      "senescence", 
      "plants", 
      "metabolism", 
      "Arabidopsis", 
      "metabolites", 
      "leaves", 
      "sulfur-containing compounds", 
      "seeds", 
      "growth", 
      "organs", 
      "acid", 
      "recycling", 
      "sink", 
      "development", 
      "redistribution", 
      "compounds", 
      "changes", 
      "analysis", 
      "sulfur", 
      "process", 
      "order", 
      "demand"
    ], 
    "name": "Metabolic Analysis of Sulfur Metabolism During Leaf Senescence", 
    "pagination": "99-105", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1053485888"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/978-3-319-20137-5_10"
        ]
      }
    ], 
    "publisher": {
      "name": "Springer Nature", 
      "type": "Organisation"
    }, 
    "sameAs": [
      "https://doi.org/10.1007/978-3-319-20137-5_10", 
      "https://app.dimensions.ai/details/publication/pub.1053485888"
    ], 
    "sdDataset": "chapters", 
    "sdDatePublished": "2022-08-04T17:14", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20220804/entities/gbq_results/chapter/chapter_113.jsonl", 
    "type": "Chapter", 
    "url": "https://doi.org/10.1007/978-3-319-20137-5_10"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/978-3-319-20137-5_10'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/978-3-319-20137-5_10'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/978-3-319-20137-5_10'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/978-3-319-20137-5_10'


 

This table displays all metadata directly associated to this object as RDF triples.

120 TRIPLES      22 PREDICATES      59 URIs      52 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/978-3-319-20137-5_10 schema:about anzsrc-for:06
2 anzsrc-for:0607
3 schema:author Nc014b865b9a8452d8b08695853e3a844
4 schema:datePublished 2015
5 schema:datePublishedReg 2015-01-01
6 schema:description Plants have a constitutive demand for sulfur to synthesize sulfur-containing amino acids, numerous essential metabolites and secondary metabolites for growth and development. Leaf senescence in plants is a highly coordinated physiological process and is critical for nutrient redistribution from senescing leaves to newly formed organs including developing seeds which act as sinks. In order to study the metabolism and recycling of sulfur-containing compounds during leaf senescence, we analyzed the changes of sulfur-containing metabolites using the model plant Arabidopsis thaliana.
7 schema:editor N2eff6d59a5994e8ab0ddb383776545b5
8 schema:genre chapter
9 schema:isAccessibleForFree false
10 schema:isPartOf N9ed7487b6c2e424394447d843036178d
11 schema:keywords Arabidopsis
12 acid
13 amino acids
14 analysis
15 changes
16 compounds
17 demand
18 development
19 essential metabolites
20 growth
21 leaf senescence
22 leaves
23 metabolic analysis
24 metabolism
25 metabolites
26 model plant Arabidopsis
27 nutrient redistribution
28 order
29 organs
30 physiological processes
31 plant Arabidopsis
32 plants
33 process
34 recycling
35 redistribution
36 secondary metabolites
37 seeds
38 senescence
39 sink
40 sulfur
41 sulfur metabolism
42 sulfur-containing amino acids
43 sulfur-containing compounds
44 sulfur-containing metabolites
45 schema:name Metabolic Analysis of Sulfur Metabolism During Leaf Senescence
46 schema:pagination 99-105
47 schema:productId N08b7dc61abb04db280893dc0c96279a8
48 N258619e9e914498aa0f972395c5d537e
49 schema:publisher Nb16c28bce24c482a8e86810ca26e32a9
50 schema:sameAs https://app.dimensions.ai/details/publication/pub.1053485888
51 https://doi.org/10.1007/978-3-319-20137-5_10
52 schema:sdDatePublished 2022-08-04T17:14
53 schema:sdLicense https://scigraph.springernature.com/explorer/license/
54 schema:sdPublisher N676190392844435eb9223048e9886ccd
55 schema:url https://doi.org/10.1007/978-3-319-20137-5_10
56 sgo:license sg:explorer/license/
57 sgo:sdDataset chapters
58 rdf:type schema:Chapter
59 N08b7dc61abb04db280893dc0c96279a8 schema:name dimensions_id
60 schema:value pub.1053485888
61 rdf:type schema:PropertyValue
62 N10367934a8504ceda301c8a5bd7bdb2a schema:familyName De Kok
63 schema:givenName Luit J.
64 rdf:type schema:Person
65 N258619e9e914498aa0f972395c5d537e schema:name doi
66 schema:value 10.1007/978-3-319-20137-5_10
67 rdf:type schema:PropertyValue
68 N2eff6d59a5994e8ab0ddb383776545b5 rdf:first N10367934a8504ceda301c8a5bd7bdb2a
69 rdf:rest Nafc7c3c895964b4f9767ce3bf506c909
70 N42455667c9b843bdadca6914a054bd84 schema:familyName Saito
71 schema:givenName Kazuki
72 rdf:type schema:Person
73 N491223cd507a46f4863326a60ff5dac3 schema:familyName Hawkesford
74 schema:givenName Malcolm J.
75 rdf:type schema:Person
76 N534f7ad304d3435c96969cfe8680847e rdf:first N5c4d0e136c5942a5bfc6b4cd865c4aa4
77 rdf:rest rdf:nil
78 N5c4d0e136c5942a5bfc6b4cd865c4aa4 schema:familyName Schnug
79 schema:givenName Ewald
80 rdf:type schema:Person
81 N676190392844435eb9223048e9886ccd schema:name Springer Nature - SN SciGraph project
82 rdf:type schema:Organization
83 N7fece1d28bb543808125a418d9499dcd rdf:first sg:person.01030207204.90
84 rdf:rest rdf:nil
85 N9dafd34c30674c0ba9d20fae706a49f5 rdf:first Nef6541ff3561432aba57db253e2c1c25
86 rdf:rest Nc8173dc3dbc14320b592923950b87866
87 N9ed7487b6c2e424394447d843036178d schema:isbn 978-3-319-20136-8
88 978-3-319-20137-5
89 schema:name Molecular Physiology and Ecophysiology of Sulfur
90 rdf:type schema:Book
91 Nafc7c3c895964b4f9767ce3bf506c909 rdf:first N491223cd507a46f4863326a60ff5dac3
92 rdf:rest N9dafd34c30674c0ba9d20fae706a49f5
93 Nb16c28bce24c482a8e86810ca26e32a9 schema:name Springer Nature
94 rdf:type schema:Organisation
95 Nc014b865b9a8452d8b08695853e3a844 rdf:first sg:person.01103653720.68
96 rdf:rest N7fece1d28bb543808125a418d9499dcd
97 Nc8173dc3dbc14320b592923950b87866 rdf:first N42455667c9b843bdadca6914a054bd84
98 rdf:rest N534f7ad304d3435c96969cfe8680847e
99 Nef6541ff3561432aba57db253e2c1c25 schema:familyName Rennenberg
100 schema:givenName Heinz
101 rdf:type schema:Person
102 anzsrc-for:06 schema:inDefinedTermSet anzsrc-for:
103 schema:name Biological Sciences
104 rdf:type schema:DefinedTerm
105 anzsrc-for:0607 schema:inDefinedTermSet anzsrc-for:
106 schema:name Plant Biology
107 rdf:type schema:DefinedTerm
108 sg:person.01030207204.90 schema:affiliation grid-institutes:grid.418390.7
109 schema:familyName Hoefgen
110 schema:givenName Rainer
111 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01030207204.90
112 rdf:type schema:Person
113 sg:person.01103653720.68 schema:affiliation grid-institutes:grid.418390.7
114 schema:familyName Watanabe
115 schema:givenName Mutsumi
116 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01103653720.68
117 rdf:type schema:Person
118 grid-institutes:grid.418390.7 schema:alternateName Max Planck Institute of Molecular Plant Physiology, Am Muehlenberg 1, 14476, Potsdam-Golm, Germany
119 schema:name Max Planck Institute of Molecular Plant Physiology, Am Muehlenberg 1, 14476, Potsdam-Golm, Germany
120 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...