Personalized Management of Epilepsy Through Smart Use of EEG and Detailed MEG Analysis View Full Text


Ontology type: schema:Chapter     


Chapter Info

DATE

2015

AUTHORS

Vahe Poghosyan , Andreas A. Ioannides

ABSTRACT

ARMOR aspires to use all available information from diverse sources to enhance the management of epilepsy in terms of diagnosis, home monitoring and evaluating the efficacy of treatment. In this chapter we introduce a novel approach aimed at achieving this goal through smart use of available data. The primary focus of the approach is to use magnetoencephalography (MEG) or high-density electroencephalography (hdEEG), when they are available, to improve the effectiveness of routine electroencephalography (EEG) tests. In a nutshell, we acknowledge that with the currently available hardware it is not possible to record MEG or hdEEG on a routine basis, so we want to use one or few such measurements to develop a personalized neurophysiological model of the epileptic condition and then use the model to derive specific biomarkers, which can be measured with simple and more easily available techniques such as few-channel EEG, electrocardiogram (ECG), electrodermal response (EDR) etc. Thus the goal is to use MEG or hdEEG for background reference and a base for development of biomarkers that can address specific clinical questions for a specific patient using simpler devices, which can be easily used in the home environment, such as few EEG electrodes. Although as stated above the primary focus of the approach is the smart use of advanced neurophysiological techniques, such as MEG or hdEEG, the methods developed here can be used with simpler data, such as low-density EEG (e.g. 21-electrode 10–20 system), which is largely available for most epilepsy patients, to significantly improve the EEG setup for further routine measurements. More... »

PAGES

255-270

Book

TITLE

Cyberphysical Systems for Epilepsy and Related Brain Disorders

ISBN

978-3-319-20048-4
978-3-319-20049-1

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/978-3-319-20049-1_13

DOI

http://dx.doi.org/10.1007/978-3-319-20049-1_13

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1052992608


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0801", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Artificial Intelligence and Image Processing", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/08", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Information and Computing Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "name": [
            "Laboratory for Human Brain Dynamics, AAI Scientific Cultural Services Ltd."
          ], 
          "type": "Organization"
        }, 
        "familyName": "Poghosyan", 
        "givenName": "Vahe", 
        "id": "sg:person.01145340017.81", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01145340017.81"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "name": [
            "Laboratory for Human Brain Dynamics, AAI Scientific Cultural Services Ltd."
          ], 
          "type": "Organization"
        }, 
        "familyName": "Ioannides", 
        "givenName": "Andreas A.", 
        "id": "sg:person.0600434417.84", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0600434417.84"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1002/ana.21389", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1000648843"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.nicl.2013.04.008", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1003657817"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.neuroimage.2006.11.052", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1004951963"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.neuroimage.2006.11.052", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1004951963"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0013-4694(80)90419-8", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1008248777"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0013-4694(80)90419-8", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1008248777"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.neuroimage.2010.07.054", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1009359776"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1523/jneurosci.1091-05.2005", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1015109357"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s1388-2457(00)00560-5", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1016047323"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.neuroimage.2004.06.023", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1018706602"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.clinph.2009.08.018", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1021006265"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.eplepsyres.2009.03.023", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1022363796"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/cercor/bhg091", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1025790514"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1097/wnp.0b013e3181b49d50", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1027938336"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1097/wnp.0b013e3181b49d50", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1027938336"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1097/wnp.0b013e3181b49d50", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1027938336"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.neuroimage.2012.01.121", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1028815754"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1073/pnas.88.24.11037", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1031262059"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0079-6123(04)48012-1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1031820059"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1097/wnp.0b013e3181baabef", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1033153952"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1097/wnp.0b013e3181baabef", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1033153952"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1097/wnp.0b013e3181baabef", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1033153952"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.neuroimage.2008.09.030", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1034493939"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1515/bmte.2002.47.3.59", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1038755549"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1111/j.1528-1167.2005.65504.x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1041203386"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1111/j.1528-1167.2005.65504.x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1041203386"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s1053-8119(02)00053-8", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1041743911"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1088/0266-5611/6/4/005", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1041998952"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.3389/fnhum.2014.00062", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1042044598"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.seizure.2010.06.004", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1043014592"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.neuroimage.2009.12.033", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1045626277"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1006/nimg.2002.1102", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1046593474"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1006/nimg.2002.1102", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1046593474"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.neuron.2008.04.013", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1047377074"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.neuron.2008.04.013", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1047377074"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/42.759120", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061170758"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1212/01.wnl.0000326591.29858.1a", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1064350561"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1212/01.wnl.0000326591.29858.1a", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1064350561"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1212/01.wnl.0000326591.29858.1a", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1064350561"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/acprof:oso/9780195058239.001.0001", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1098715012"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2015", 
    "datePublishedReg": "2015-01-01", 
    "description": "ARMOR aspires to use all available information from diverse sources to enhance the management of epilepsy in terms of diagnosis, home monitoring and evaluating the efficacy of treatment. In this chapter we introduce a novel approach aimed at achieving this goal through smart use of available data. The primary focus of the approach is to use magnetoencephalography (MEG) or high-density electroencephalography (hdEEG), when they are available, to improve the effectiveness of routine electroencephalography (EEG) tests. In a nutshell, we acknowledge that with the currently available hardware it is not possible to record MEG or hdEEG on a routine basis, so we want to use one or few such measurements to develop a personalized neurophysiological model of the epileptic condition and then use the model to derive specific biomarkers, which can be measured with simple and more easily available techniques such as few-channel EEG, electrocardiogram (ECG), electrodermal response (EDR) etc. Thus the goal is to use MEG or hdEEG for background reference and a base for development of biomarkers that can address specific clinical questions for a specific patient using simpler devices, which can be easily used in the home environment, such as few EEG electrodes. Although as stated above the primary focus of the approach is the smart use of advanced neurophysiological techniques, such as MEG or hdEEG, the methods developed here can be used with simpler data, such as low-density EEG (e.g. 21-electrode 10\u201320 system), which is largely available for most epilepsy patients, to significantly improve the EEG setup for further routine measurements.", 
    "editor": [
      {
        "familyName": "Voros", 
        "givenName": "Nikolaos S.", 
        "type": "Person"
      }, 
      {
        "familyName": "Antonopoulos", 
        "givenName": "Christos P.", 
        "type": "Person"
      }
    ], 
    "genre": "chapter", 
    "id": "sg:pub.10.1007/978-3-319-20049-1_13", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": {
      "isbn": [
        "978-3-319-20048-4", 
        "978-3-319-20049-1"
      ], 
      "name": "Cyberphysical Systems for Epilepsy and Related Brain Disorders", 
      "type": "Book"
    }, 
    "name": "Personalized Management of Epilepsy Through Smart Use of EEG and Detailed MEG Analysis", 
    "pagination": "255-270", 
    "productId": [
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/978-3-319-20049-1_13"
        ]
      }, 
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "fc6b65c3347414f16ddffd1c796f07ec112b1fdbc4079f31347f1924ccd38424"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1052992608"
        ]
      }
    ], 
    "publisher": {
      "location": "Cham", 
      "name": "Springer International Publishing", 
      "type": "Organisation"
    }, 
    "sameAs": [
      "https://doi.org/10.1007/978-3-319-20049-1_13", 
      "https://app.dimensions.ai/details/publication/pub.1052992608"
    ], 
    "sdDataset": "chapters", 
    "sdDatePublished": "2019-04-15T16:20", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8675_00000276.jsonl", 
    "type": "Chapter", 
    "url": "http://link.springer.com/10.1007/978-3-319-20049-1_13"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/978-3-319-20049-1_13'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/978-3-319-20049-1_13'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/978-3-319-20049-1_13'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/978-3-319-20049-1_13'


 

This table displays all metadata directly associated to this object as RDF triples.

165 TRIPLES      23 PREDICATES      56 URIs      20 LITERALS      8 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/978-3-319-20049-1_13 schema:about anzsrc-for:08
2 anzsrc-for:0801
3 schema:author N5c5d1ae027ba40f0a1f85e4d035c7094
4 schema:citation https://doi.org/10.1002/ana.21389
5 https://doi.org/10.1006/nimg.2002.1102
6 https://doi.org/10.1016/0013-4694(80)90419-8
7 https://doi.org/10.1016/j.clinph.2009.08.018
8 https://doi.org/10.1016/j.eplepsyres.2009.03.023
9 https://doi.org/10.1016/j.neuroimage.2004.06.023
10 https://doi.org/10.1016/j.neuroimage.2006.11.052
11 https://doi.org/10.1016/j.neuroimage.2008.09.030
12 https://doi.org/10.1016/j.neuroimage.2009.12.033
13 https://doi.org/10.1016/j.neuroimage.2010.07.054
14 https://doi.org/10.1016/j.neuroimage.2012.01.121
15 https://doi.org/10.1016/j.neuron.2008.04.013
16 https://doi.org/10.1016/j.nicl.2013.04.008
17 https://doi.org/10.1016/j.seizure.2010.06.004
18 https://doi.org/10.1016/s0079-6123(04)48012-1
19 https://doi.org/10.1016/s1053-8119(02)00053-8
20 https://doi.org/10.1016/s1388-2457(00)00560-5
21 https://doi.org/10.1073/pnas.88.24.11037
22 https://doi.org/10.1088/0266-5611/6/4/005
23 https://doi.org/10.1093/acprof:oso/9780195058239.001.0001
24 https://doi.org/10.1093/cercor/bhg091
25 https://doi.org/10.1097/wnp.0b013e3181b49d50
26 https://doi.org/10.1097/wnp.0b013e3181baabef
27 https://doi.org/10.1109/42.759120
28 https://doi.org/10.1111/j.1528-1167.2005.65504.x
29 https://doi.org/10.1212/01.wnl.0000326591.29858.1a
30 https://doi.org/10.1515/bmte.2002.47.3.59
31 https://doi.org/10.1523/jneurosci.1091-05.2005
32 https://doi.org/10.3389/fnhum.2014.00062
33 schema:datePublished 2015
34 schema:datePublishedReg 2015-01-01
35 schema:description ARMOR aspires to use all available information from diverse sources to enhance the management of epilepsy in terms of diagnosis, home monitoring and evaluating the efficacy of treatment. In this chapter we introduce a novel approach aimed at achieving this goal through smart use of available data. The primary focus of the approach is to use magnetoencephalography (MEG) or high-density electroencephalography (hdEEG), when they are available, to improve the effectiveness of routine electroencephalography (EEG) tests. In a nutshell, we acknowledge that with the currently available hardware it is not possible to record MEG or hdEEG on a routine basis, so we want to use one or few such measurements to develop a personalized neurophysiological model of the epileptic condition and then use the model to derive specific biomarkers, which can be measured with simple and more easily available techniques such as few-channel EEG, electrocardiogram (ECG), electrodermal response (EDR) etc. Thus the goal is to use MEG or hdEEG for background reference and a base for development of biomarkers that can address specific clinical questions for a specific patient using simpler devices, which can be easily used in the home environment, such as few EEG electrodes. Although as stated above the primary focus of the approach is the smart use of advanced neurophysiological techniques, such as MEG or hdEEG, the methods developed here can be used with simpler data, such as low-density EEG (e.g. 21-electrode 10–20 system), which is largely available for most epilepsy patients, to significantly improve the EEG setup for further routine measurements.
36 schema:editor Ne13f49421e8644dabc1bd999ae735771
37 schema:genre chapter
38 schema:inLanguage en
39 schema:isAccessibleForFree false
40 schema:isPartOf N7c54537d29394515a7f44fecb01c0e58
41 schema:name Personalized Management of Epilepsy Through Smart Use of EEG and Detailed MEG Analysis
42 schema:pagination 255-270
43 schema:productId N5c679db5e24340fb86b7cc4a9aaafec4
44 Nc9c407cc94644a01af5b65c489cc4ed3
45 Nd166561c355f4644ac0c8c6680f15722
46 schema:publisher N3475020739e84b6990b460d18b34f92c
47 schema:sameAs https://app.dimensions.ai/details/publication/pub.1052992608
48 https://doi.org/10.1007/978-3-319-20049-1_13
49 schema:sdDatePublished 2019-04-15T16:20
50 schema:sdLicense https://scigraph.springernature.com/explorer/license/
51 schema:sdPublisher Nec6722e74a324388b46b59ea3c693d36
52 schema:url http://link.springer.com/10.1007/978-3-319-20049-1_13
53 sgo:license sg:explorer/license/
54 sgo:sdDataset chapters
55 rdf:type schema:Chapter
56 N08d996bdb4494c359f0c2c3d87bbf323 schema:name Laboratory for Human Brain Dynamics, AAI Scientific Cultural Services Ltd.
57 rdf:type schema:Organization
58 N3475020739e84b6990b460d18b34f92c schema:location Cham
59 schema:name Springer International Publishing
60 rdf:type schema:Organisation
61 N479c4d8e48b54e52a9595562ee9ef84d schema:familyName Voros
62 schema:givenName Nikolaos S.
63 rdf:type schema:Person
64 N598105a8a9174ae7b95bc2c6c7f355a9 rdf:first sg:person.0600434417.84
65 rdf:rest rdf:nil
66 N5c5d1ae027ba40f0a1f85e4d035c7094 rdf:first sg:person.01145340017.81
67 rdf:rest N598105a8a9174ae7b95bc2c6c7f355a9
68 N5c679db5e24340fb86b7cc4a9aaafec4 schema:name readcube_id
69 schema:value fc6b65c3347414f16ddffd1c796f07ec112b1fdbc4079f31347f1924ccd38424
70 rdf:type schema:PropertyValue
71 N75275d996f30478ab5b9f7b8c2df2c2e schema:name Laboratory for Human Brain Dynamics, AAI Scientific Cultural Services Ltd.
72 rdf:type schema:Organization
73 N7c54537d29394515a7f44fecb01c0e58 schema:isbn 978-3-319-20048-4
74 978-3-319-20049-1
75 schema:name Cyberphysical Systems for Epilepsy and Related Brain Disorders
76 rdf:type schema:Book
77 N93a47c8ee808483f9bc4b09e327e405d schema:familyName Antonopoulos
78 schema:givenName Christos P.
79 rdf:type schema:Person
80 Nc9c407cc94644a01af5b65c489cc4ed3 schema:name doi
81 schema:value 10.1007/978-3-319-20049-1_13
82 rdf:type schema:PropertyValue
83 Nd166561c355f4644ac0c8c6680f15722 schema:name dimensions_id
84 schema:value pub.1052992608
85 rdf:type schema:PropertyValue
86 Ne13f49421e8644dabc1bd999ae735771 rdf:first N479c4d8e48b54e52a9595562ee9ef84d
87 rdf:rest Nf462397d1ea14ed3aeea3f0c079e2f8a
88 Nec6722e74a324388b46b59ea3c693d36 schema:name Springer Nature - SN SciGraph project
89 rdf:type schema:Organization
90 Nf462397d1ea14ed3aeea3f0c079e2f8a rdf:first N93a47c8ee808483f9bc4b09e327e405d
91 rdf:rest rdf:nil
92 anzsrc-for:08 schema:inDefinedTermSet anzsrc-for:
93 schema:name Information and Computing Sciences
94 rdf:type schema:DefinedTerm
95 anzsrc-for:0801 schema:inDefinedTermSet anzsrc-for:
96 schema:name Artificial Intelligence and Image Processing
97 rdf:type schema:DefinedTerm
98 sg:person.01145340017.81 schema:affiliation N08d996bdb4494c359f0c2c3d87bbf323
99 schema:familyName Poghosyan
100 schema:givenName Vahe
101 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01145340017.81
102 rdf:type schema:Person
103 sg:person.0600434417.84 schema:affiliation N75275d996f30478ab5b9f7b8c2df2c2e
104 schema:familyName Ioannides
105 schema:givenName Andreas A.
106 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0600434417.84
107 rdf:type schema:Person
108 https://doi.org/10.1002/ana.21389 schema:sameAs https://app.dimensions.ai/details/publication/pub.1000648843
109 rdf:type schema:CreativeWork
110 https://doi.org/10.1006/nimg.2002.1102 schema:sameAs https://app.dimensions.ai/details/publication/pub.1046593474
111 rdf:type schema:CreativeWork
112 https://doi.org/10.1016/0013-4694(80)90419-8 schema:sameAs https://app.dimensions.ai/details/publication/pub.1008248777
113 rdf:type schema:CreativeWork
114 https://doi.org/10.1016/j.clinph.2009.08.018 schema:sameAs https://app.dimensions.ai/details/publication/pub.1021006265
115 rdf:type schema:CreativeWork
116 https://doi.org/10.1016/j.eplepsyres.2009.03.023 schema:sameAs https://app.dimensions.ai/details/publication/pub.1022363796
117 rdf:type schema:CreativeWork
118 https://doi.org/10.1016/j.neuroimage.2004.06.023 schema:sameAs https://app.dimensions.ai/details/publication/pub.1018706602
119 rdf:type schema:CreativeWork
120 https://doi.org/10.1016/j.neuroimage.2006.11.052 schema:sameAs https://app.dimensions.ai/details/publication/pub.1004951963
121 rdf:type schema:CreativeWork
122 https://doi.org/10.1016/j.neuroimage.2008.09.030 schema:sameAs https://app.dimensions.ai/details/publication/pub.1034493939
123 rdf:type schema:CreativeWork
124 https://doi.org/10.1016/j.neuroimage.2009.12.033 schema:sameAs https://app.dimensions.ai/details/publication/pub.1045626277
125 rdf:type schema:CreativeWork
126 https://doi.org/10.1016/j.neuroimage.2010.07.054 schema:sameAs https://app.dimensions.ai/details/publication/pub.1009359776
127 rdf:type schema:CreativeWork
128 https://doi.org/10.1016/j.neuroimage.2012.01.121 schema:sameAs https://app.dimensions.ai/details/publication/pub.1028815754
129 rdf:type schema:CreativeWork
130 https://doi.org/10.1016/j.neuron.2008.04.013 schema:sameAs https://app.dimensions.ai/details/publication/pub.1047377074
131 rdf:type schema:CreativeWork
132 https://doi.org/10.1016/j.nicl.2013.04.008 schema:sameAs https://app.dimensions.ai/details/publication/pub.1003657817
133 rdf:type schema:CreativeWork
134 https://doi.org/10.1016/j.seizure.2010.06.004 schema:sameAs https://app.dimensions.ai/details/publication/pub.1043014592
135 rdf:type schema:CreativeWork
136 https://doi.org/10.1016/s0079-6123(04)48012-1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1031820059
137 rdf:type schema:CreativeWork
138 https://doi.org/10.1016/s1053-8119(02)00053-8 schema:sameAs https://app.dimensions.ai/details/publication/pub.1041743911
139 rdf:type schema:CreativeWork
140 https://doi.org/10.1016/s1388-2457(00)00560-5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1016047323
141 rdf:type schema:CreativeWork
142 https://doi.org/10.1073/pnas.88.24.11037 schema:sameAs https://app.dimensions.ai/details/publication/pub.1031262059
143 rdf:type schema:CreativeWork
144 https://doi.org/10.1088/0266-5611/6/4/005 schema:sameAs https://app.dimensions.ai/details/publication/pub.1041998952
145 rdf:type schema:CreativeWork
146 https://doi.org/10.1093/acprof:oso/9780195058239.001.0001 schema:sameAs https://app.dimensions.ai/details/publication/pub.1098715012
147 rdf:type schema:CreativeWork
148 https://doi.org/10.1093/cercor/bhg091 schema:sameAs https://app.dimensions.ai/details/publication/pub.1025790514
149 rdf:type schema:CreativeWork
150 https://doi.org/10.1097/wnp.0b013e3181b49d50 schema:sameAs https://app.dimensions.ai/details/publication/pub.1027938336
151 rdf:type schema:CreativeWork
152 https://doi.org/10.1097/wnp.0b013e3181baabef schema:sameAs https://app.dimensions.ai/details/publication/pub.1033153952
153 rdf:type schema:CreativeWork
154 https://doi.org/10.1109/42.759120 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061170758
155 rdf:type schema:CreativeWork
156 https://doi.org/10.1111/j.1528-1167.2005.65504.x schema:sameAs https://app.dimensions.ai/details/publication/pub.1041203386
157 rdf:type schema:CreativeWork
158 https://doi.org/10.1212/01.wnl.0000326591.29858.1a schema:sameAs https://app.dimensions.ai/details/publication/pub.1064350561
159 rdf:type schema:CreativeWork
160 https://doi.org/10.1515/bmte.2002.47.3.59 schema:sameAs https://app.dimensions.ai/details/publication/pub.1038755549
161 rdf:type schema:CreativeWork
162 https://doi.org/10.1523/jneurosci.1091-05.2005 schema:sameAs https://app.dimensions.ai/details/publication/pub.1015109357
163 rdf:type schema:CreativeWork
164 https://doi.org/10.3389/fnhum.2014.00062 schema:sameAs https://app.dimensions.ai/details/publication/pub.1042044598
165 rdf:type schema:CreativeWork
 




Preview window. Press ESC to close (or click here)


...