Pancreatic Tumor Growth Prediction with Multiplicative Growth and Image-Derived Motion View Full Text


Ontology type: schema:Chapter      Open Access: True


Chapter Info

DATE

2015-06-23

AUTHORS

Ken C. L. Wong , Ronald M. Summers , Electron Kebebew , Jianhua Yao

ABSTRACT

Pancreatic neuroendocrine tumors are abnormal growths of hormone-producing cells in the pancreas. Different from the brain in the skull, the pancreas in the abdomen can be largely deformed by the body posture and the surrounding organs. In consequence, both tumor growth and pancreatic motion attribute to the tumor shape difference observable from images. As images at different time points are used to personalize the tumor growth model, the prediction accuracy may be reduced if such motion is ignored. Therefore, we incorporate the image-derived pancreatic motion to tumor growth personalization. For realistic mechanical interactions, the multiplicative growth decomposition is used with a hyperelastic constitutive law to model tumor mass effect, which allows growth modeling without compromising the mechanical accuracy. With also the FDG-PET and contrast-enhanced CT images, the functional, structural, and motion data are combined for a more patient-specific model. Experiments on synthetic and clinical data show the importance of image-derived motion on estimating physiologically plausible mechanical properties and the promising performance of our framework. From six patient data sets, the recall, precision, Dice coefficient, relative volume difference, and average surface distance were 89.8 ± 3.5%, 85.6 ± 7.5%, 87.4 ± 3.6%, 9.7 ± 7.2%, and 0.6 ± 0.2 mm, respectively. More... »

PAGES

501-513

References to SciGraph publications

  • 2012-08. Classifying collective cancer cell invasion in NATURE CELL BIOLOGY
  • 2005. Finite Element Modeling of Brain Tumor Mass-Effect from 3D Medical Images in MEDICAL IMAGE COMPUTING AND COMPUTER-ASSISTED INTERVENTION – MICCAI 2005
  • 2011. A Generative Approach for Image-Based Modeling of Tumor Growth in INFORMATION PROCESSING IN MEDICAL IMAGING
  • 2008-06. An image-driven parameter estimation problem for a reaction–diffusion glioma growth model with mass effects in JOURNAL OF MATHEMATICAL BIOLOGY
  • 2014. Tumor Growth Prediction with Hyperelastic Biomechanical Model, Physiological Data Fusion, and Nonlinear Optimization in MEDICAL IMAGE COMPUTING AND COMPUTER-ASSISTED INTERVENTION – MICCAI 2014
  • 2001-10. A general model for ontogenetic growth in NATURE
  • Identifiers

    URI

    http://scigraph.springernature.com/pub.10.1007/978-3-319-19992-4_39

    DOI

    http://dx.doi.org/10.1007/978-3-319-19992-4_39

    DIMENSIONS

    https://app.dimensions.ai/details/publication/pub.1006658509

    PUBMED

    https://www.ncbi.nlm.nih.gov/pubmed/26221698


    Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
    Incoming Citations Browse incoming citations for this publication using opencitations.net

    JSON-LD is the canonical representation for SciGraph data.

    TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

    [
      {
        "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
        "about": [
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0801", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Artificial Intelligence and Image Processing", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/08", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Information and Computing Sciences", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Algorithms", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Artificial Intelligence", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Disease Progression", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Female", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Fluorodeoxyglucose F18", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Humans", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Image Enhancement", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Image Interpretation, Computer-Assisted", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Imaging, Three-Dimensional", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Male", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Middle Aged", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Motion", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Multimodal Imaging", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Neuroendocrine Tumors", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Pancreatic Neoplasms", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Pattern Recognition, Automated", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Positron-Emission Tomography", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Radiopharmaceuticals", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Reproducibility of Results", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Sensitivity and Specificity", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Subtraction Technique", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Tomography, X-Ray Computed", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Tumor Burden", 
            "type": "DefinedTerm"
          }
        ], 
        "author": [
          {
            "affiliation": {
              "name": [
                "Radiology and Imaging Sciences, Clinical Center, NIH, Bethesda, MD, USA"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Wong", 
            "givenName": "Ken C. L.", 
            "id": "sg:person.01106723443.05", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01106723443.05"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "name": [
                "Radiology and Imaging Sciences, Clinical Center, NIH, Bethesda, MD, USA"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Summers", 
            "givenName": "Ronald M.", 
            "id": "sg:person.011331054577.30", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011331054577.30"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "National Institute of Arthritis and Musculoskeletal and Skin Diseases", 
              "id": "https://www.grid.ac/institutes/grid.420086.8", 
              "name": [
                "Endocrine Oncology Branch, National Cancer Institute, NIH, Bethesda, MD, USA"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Kebebew", 
            "givenName": "Electron", 
            "id": "sg:person.0724132322.08", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0724132322.08"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "name": [
                "Radiology and Imaging Sciences, Clinical Center, NIH, Bethesda, MD, USA"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Yao", 
            "givenName": "Jianhua", 
            "id": "sg:person.012366760067.46", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012366760067.46"
            ], 
            "type": "Person"
          }
        ], 
        "citation": [
          {
            "id": "https://doi.org/10.1148/radiol.10090908", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1006642352"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/ncb2548", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1007269666", 
              "https://doi.org/10.1038/ncb2548"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1067/msy.1998.91823", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1009819528"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00285-007-0139-x", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1012292263", 
              "https://doi.org/10.1007/s00285-007-0139-x"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00285-007-0139-x", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1012292263", 
              "https://doi.org/10.1007/s00285-007-0139-x"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1634/theoncologist.2008-0259", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1020346669"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/0021-9290(94)90021-3", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1028537101"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/11566465_50", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1030322916", 
              "https://doi.org/10.1007/11566465_50"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/11566465_50", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1030322916", 
              "https://doi.org/10.1007/11566465_50"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/978-3-319-10470-6_4", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1038124814", 
              "https://doi.org/10.1007/978-3-319-10470-6_4"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/s0020-7683(02)00352-9", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1038728468"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/s0020-7683(02)00352-9", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1038728468"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/35098076", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1041527409", 
              "https://doi.org/10.1038/35098076"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/35098076", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1041527409", 
              "https://doi.org/10.1038/35098076"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.neuroimage.2006.01.015", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1045466943"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.ijrobp.2009.02.003", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1045830687"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/978-3-642-22092-0_60", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1050939701", 
              "https://doi.org/10.1007/978-3-642-22092-0_60"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/978-3-642-22092-0_60", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1050939701", 
              "https://doi.org/10.1007/978-3-642-22092-0_60"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1109/tmi.2003.815867", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1061694447"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1109/tmi.2005.857217", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1061694777"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1109/tmi.2009.2026413", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1061695435"
            ], 
            "type": "CreativeWork"
          }
        ], 
        "datePublished": "2015-06-23", 
        "datePublishedReg": "2015-06-23", 
        "description": "Pancreatic neuroendocrine tumors are abnormal growths of hormone-producing cells in the pancreas. Different from the brain in the skull, the pancreas in the abdomen can be largely deformed by the body posture and the surrounding organs. In consequence, both tumor growth and pancreatic motion attribute to the tumor shape difference observable from images. As images at different time points are used to personalize the tumor growth model, the prediction accuracy may be reduced if such motion is ignored. Therefore, we incorporate the image-derived pancreatic motion to tumor growth personalization. For realistic mechanical interactions, the multiplicative growth decomposition is used with a hyperelastic constitutive law to model tumor mass effect, which allows growth modeling without compromising the mechanical accuracy. With also the FDG-PET and contrast-enhanced CT images, the functional, structural, and motion data are combined for a more patient-specific model. Experiments on synthetic and clinical data show the importance of image-derived motion on estimating physiologically plausible mechanical properties and the promising performance of our framework. From six patient data sets, the recall, precision, Dice coefficient, relative volume difference, and average surface distance were 89.8 \u00b1 3.5%, 85.6 \u00b1 7.5%, 87.4 \u00b1 3.6%, 9.7 \u00b1 7.2%, and 0.6 \u00b1 0.2 mm, respectively.", 
        "editor": [
          {
            "familyName": "Ourselin", 
            "givenName": "Sebastien", 
            "type": "Person"
          }, 
          {
            "familyName": "Alexander", 
            "givenName": "Daniel C.", 
            "type": "Person"
          }, 
          {
            "familyName": "Westin", 
            "givenName": "Carl-Fredrik", 
            "type": "Person"
          }, 
          {
            "familyName": "Cardoso", 
            "givenName": "M. Jorge", 
            "type": "Person"
          }
        ], 
        "genre": "chapter", 
        "id": "sg:pub.10.1007/978-3-319-19992-4_39", 
        "inLanguage": [
          "en"
        ], 
        "isAccessibleForFree": true, 
        "isFundedItemOf": [
          {
            "id": "sg:grant.4055703", 
            "type": "MonetaryGrant"
          }
        ], 
        "isPartOf": {
          "isbn": [
            "978-3-319-19991-7", 
            "978-3-319-19992-4"
          ], 
          "name": "Information Processing in Medical Imaging", 
          "type": "Book"
        }, 
        "name": "Pancreatic Tumor Growth Prediction with Multiplicative Growth and Image-Derived Motion", 
        "pagination": "501-513", 
        "productId": [
          {
            "name": "pubmed_id", 
            "type": "PropertyValue", 
            "value": [
              "26221698"
            ]
          }, 
          {
            "name": "dimensions_id", 
            "type": "PropertyValue", 
            "value": [
              "pub.1006658509"
            ]
          }, 
          {
            "name": "doi", 
            "type": "PropertyValue", 
            "value": [
              "10.1007/978-3-319-19992-4_39"
            ]
          }, 
          {
            "name": "readcube_id", 
            "type": "PropertyValue", 
            "value": [
              "1fb73b7bc4130493aa11122f3fdadc0f1de703452005dd4a5d9341b732b3b306"
            ]
          }
        ], 
        "publisher": {
          "location": "Cham", 
          "name": "Springer International Publishing", 
          "type": "Organisation"
        }, 
        "sameAs": [
          "https://doi.org/10.1007/978-3-319-19992-4_39", 
          "https://app.dimensions.ai/details/publication/pub.1006658509"
        ], 
        "sdDataset": "chapters", 
        "sdDatePublished": "2019-04-16T09:20", 
        "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
        "sdPublisher": {
          "name": "Springer Nature - SN SciGraph project", 
          "type": "Organization"
        }, 
        "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000371_0000000371/records_130829_00000000.jsonl", 
        "type": "Chapter", 
        "url": "https://link.springer.com/10.1007%2F978-3-319-19992-4_39"
      }
    ]
     

    Download the RDF metadata as:  json-ld nt turtle xml License info

    HOW TO GET THIS DATA PROGRAMMATICALLY:

    JSON-LD is a popular format for linked data which is fully compatible with JSON.

    curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/978-3-319-19992-4_39'

    N-Triples is a line-based linked data format ideal for batch operations.

    curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/978-3-319-19992-4_39'

    Turtle is a human-readable linked data format.

    curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/978-3-319-19992-4_39'

    RDF/XML is a standard XML format for linked data.

    curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/978-3-319-19992-4_39'


     

    This table displays all metadata directly associated to this object as RDF triples.

    259 TRIPLES      23 PREDICATES      66 URIs      43 LITERALS      32 BLANK NODES

    Subject Predicate Object
    1 sg:pub.10.1007/978-3-319-19992-4_39 schema:about N08246b2f61034d3c9238ce85d89782fa
    2 N128e1a05e50247f18812c7ea5d5cc0dc
    3 N135cab5df3fa411c869814b7362b48f5
    4 N1a59ec3f6854492da2c5ca583ff42c0f
    5 N2a9d04e43071404cb083b22892c20a38
    6 N3100b5f45e874eb9a1d41f2e77377561
    7 N3485ff7f72f54e62a5758d084b792970
    8 N3f28091cd7854851b8bcf007d9acd653
    9 N4279ad46977e4f0887d6bc385df4518f
    10 N49b445dcdc784feaa2e3f2d000dfd6a3
    11 N59745589964642cba4d66317b0005eea
    12 N698e5c3cbc0140718b5d0b3d867ac450
    13 N7f2b054b649d4b6eb4a92349be115d69
    14 N937ba2cd8c1f47b9b8610a96f2001dde
    15 N947247e6a720499b9215c1ca1ec0ad1f
    16 Na0408ec59bc7459e9285107f12cc7b14
    17 Naa538184f3394fdd9448fa31bba3c2cc
    18 Nac9727bc5a674ac99efb896c90f226e5
    19 Nb359eddce2974ef2aa10891236522bf1
    20 Nc84fc4e7246440dea4fc5e091b5d766e
    21 Nc9785404bb8f43f1beee3260537ed620
    22 Nd3c3f31b2da14eca963a7378a743769b
    23 Nf25ff4331ea34327af60ca3b795d9686
    24 anzsrc-for:08
    25 anzsrc-for:0801
    26 schema:author N10c38ee58acc491c9747a59e2e20d75f
    27 schema:citation sg:pub.10.1007/11566465_50
    28 sg:pub.10.1007/978-3-319-10470-6_4
    29 sg:pub.10.1007/978-3-642-22092-0_60
    30 sg:pub.10.1007/s00285-007-0139-x
    31 sg:pub.10.1038/35098076
    32 sg:pub.10.1038/ncb2548
    33 https://doi.org/10.1016/0021-9290(94)90021-3
    34 https://doi.org/10.1016/j.ijrobp.2009.02.003
    35 https://doi.org/10.1016/j.neuroimage.2006.01.015
    36 https://doi.org/10.1016/s0020-7683(02)00352-9
    37 https://doi.org/10.1067/msy.1998.91823
    38 https://doi.org/10.1109/tmi.2003.815867
    39 https://doi.org/10.1109/tmi.2005.857217
    40 https://doi.org/10.1109/tmi.2009.2026413
    41 https://doi.org/10.1148/radiol.10090908
    42 https://doi.org/10.1634/theoncologist.2008-0259
    43 schema:datePublished 2015-06-23
    44 schema:datePublishedReg 2015-06-23
    45 schema:description Pancreatic neuroendocrine tumors are abnormal growths of hormone-producing cells in the pancreas. Different from the brain in the skull, the pancreas in the abdomen can be largely deformed by the body posture and the surrounding organs. In consequence, both tumor growth and pancreatic motion attribute to the tumor shape difference observable from images. As images at different time points are used to personalize the tumor growth model, the prediction accuracy may be reduced if such motion is ignored. Therefore, we incorporate the image-derived pancreatic motion to tumor growth personalization. For realistic mechanical interactions, the multiplicative growth decomposition is used with a hyperelastic constitutive law to model tumor mass effect, which allows growth modeling without compromising the mechanical accuracy. With also the FDG-PET and contrast-enhanced CT images, the functional, structural, and motion data are combined for a more patient-specific model. Experiments on synthetic and clinical data show the importance of image-derived motion on estimating physiologically plausible mechanical properties and the promising performance of our framework. From six patient data sets, the recall, precision, Dice coefficient, relative volume difference, and average surface distance were 89.8 ± 3.5%, 85.6 ± 7.5%, 87.4 ± 3.6%, 9.7 ± 7.2%, and 0.6 ± 0.2 mm, respectively.
    46 schema:editor N97e108de1068420bac6bbe1bf178f4ad
    47 schema:genre chapter
    48 schema:inLanguage en
    49 schema:isAccessibleForFree true
    50 schema:isPartOf Nc11c2ae723ae422cbd7fcad4cb9543fb
    51 schema:name Pancreatic Tumor Growth Prediction with Multiplicative Growth and Image-Derived Motion
    52 schema:pagination 501-513
    53 schema:productId N1063eb754a21484794030e35993269d5
    54 N296f15dcbd8f46f18929817ae57fb0cd
    55 N5fcf64f7aa0c456b9136aa643cf66c96
    56 N88991eea088d405d8d53e818535c9bd1
    57 schema:publisher N4d33bd9b23c547ad813c7e6838bf5a48
    58 schema:sameAs https://app.dimensions.ai/details/publication/pub.1006658509
    59 https://doi.org/10.1007/978-3-319-19992-4_39
    60 schema:sdDatePublished 2019-04-16T09:20
    61 schema:sdLicense https://scigraph.springernature.com/explorer/license/
    62 schema:sdPublisher N2db616e671f24a769373ddb61540bef9
    63 schema:url https://link.springer.com/10.1007%2F978-3-319-19992-4_39
    64 sgo:license sg:explorer/license/
    65 sgo:sdDataset chapters
    66 rdf:type schema:Chapter
    67 N08246b2f61034d3c9238ce85d89782fa schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    68 schema:name Neuroendocrine Tumors
    69 rdf:type schema:DefinedTerm
    70 N1063eb754a21484794030e35993269d5 schema:name pubmed_id
    71 schema:value 26221698
    72 rdf:type schema:PropertyValue
    73 N10c38ee58acc491c9747a59e2e20d75f rdf:first sg:person.01106723443.05
    74 rdf:rest Nfde97ad63e304deda6ae05c4d8f4972a
    75 N128e1a05e50247f18812c7ea5d5cc0dc schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    76 schema:name Pattern Recognition, Automated
    77 rdf:type schema:DefinedTerm
    78 N135cab5df3fa411c869814b7362b48f5 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    79 schema:name Humans
    80 rdf:type schema:DefinedTerm
    81 N1a59ec3f6854492da2c5ca583ff42c0f schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    82 schema:name Female
    83 rdf:type schema:DefinedTerm
    84 N296f15dcbd8f46f18929817ae57fb0cd schema:name dimensions_id
    85 schema:value pub.1006658509
    86 rdf:type schema:PropertyValue
    87 N2a9d04e43071404cb083b22892c20a38 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    88 schema:name Pancreatic Neoplasms
    89 rdf:type schema:DefinedTerm
    90 N2db616e671f24a769373ddb61540bef9 schema:name Springer Nature - SN SciGraph project
    91 rdf:type schema:Organization
    92 N3100b5f45e874eb9a1d41f2e77377561 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    93 schema:name Positron-Emission Tomography
    94 rdf:type schema:DefinedTerm
    95 N3485ff7f72f54e62a5758d084b792970 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    96 schema:name Disease Progression
    97 rdf:type schema:DefinedTerm
    98 N3f28091cd7854851b8bcf007d9acd653 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    99 schema:name Subtraction Technique
    100 rdf:type schema:DefinedTerm
    101 N4279ad46977e4f0887d6bc385df4518f schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    102 schema:name Middle Aged
    103 rdf:type schema:DefinedTerm
    104 N48dbae6c2c8941cc8791ba9d5499b077 schema:familyName Cardoso
    105 schema:givenName M. Jorge
    106 rdf:type schema:Person
    107 N49b445dcdc784feaa2e3f2d000dfd6a3 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    108 schema:name Image Interpretation, Computer-Assisted
    109 rdf:type schema:DefinedTerm
    110 N4d33bd9b23c547ad813c7e6838bf5a48 schema:location Cham
    111 schema:name Springer International Publishing
    112 rdf:type schema:Organisation
    113 N55f46182f21844349b36d800642af5c1 schema:familyName Alexander
    114 schema:givenName Daniel C.
    115 rdf:type schema:Person
    116 N59745589964642cba4d66317b0005eea schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    117 schema:name Sensitivity and Specificity
    118 rdf:type schema:DefinedTerm
    119 N5b3dc36077d44e17830d07109fc8c25a schema:familyName Westin
    120 schema:givenName Carl-Fredrik
    121 rdf:type schema:Person
    122 N5fcf64f7aa0c456b9136aa643cf66c96 schema:name doi
    123 schema:value 10.1007/978-3-319-19992-4_39
    124 rdf:type schema:PropertyValue
    125 N698e5c3cbc0140718b5d0b3d867ac450 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    126 schema:name Fluorodeoxyglucose F18
    127 rdf:type schema:DefinedTerm
    128 N6c647c4fe7a74aeb92c30ad94875a24c rdf:first N55f46182f21844349b36d800642af5c1
    129 rdf:rest Naace0a3c38fb4746b914ced6fc0e54e1
    130 N75e529be6e0e4e288a1719cb61a2be12 rdf:first sg:person.0724132322.08
    131 rdf:rest Nbb03473d3670444aa9ce1b2358770040
    132 N7f2b054b649d4b6eb4a92349be115d69 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    133 schema:name Image Enhancement
    134 rdf:type schema:DefinedTerm
    135 N88991eea088d405d8d53e818535c9bd1 schema:name readcube_id
    136 schema:value 1fb73b7bc4130493aa11122f3fdadc0f1de703452005dd4a5d9341b732b3b306
    137 rdf:type schema:PropertyValue
    138 N937ba2cd8c1f47b9b8610a96f2001dde schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    139 schema:name Tumor Burden
    140 rdf:type schema:DefinedTerm
    141 N947247e6a720499b9215c1ca1ec0ad1f schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    142 schema:name Reproducibility of Results
    143 rdf:type schema:DefinedTerm
    144 N97e108de1068420bac6bbe1bf178f4ad rdf:first Naec26bb819494063895f7e9c311c2f06
    145 rdf:rest N6c647c4fe7a74aeb92c30ad94875a24c
    146 Na0408ec59bc7459e9285107f12cc7b14 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    147 schema:name Artificial Intelligence
    148 rdf:type schema:DefinedTerm
    149 Naa538184f3394fdd9448fa31bba3c2cc schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    150 schema:name Motion
    151 rdf:type schema:DefinedTerm
    152 Naace0a3c38fb4746b914ced6fc0e54e1 rdf:first N5b3dc36077d44e17830d07109fc8c25a
    153 rdf:rest Nf6b401d4f6984ddeb00b255e25f3e67d
    154 Nac9727bc5a674ac99efb896c90f226e5 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    155 schema:name Imaging, Three-Dimensional
    156 rdf:type schema:DefinedTerm
    157 Naec26bb819494063895f7e9c311c2f06 schema:familyName Ourselin
    158 schema:givenName Sebastien
    159 rdf:type schema:Person
    160 Nb359eddce2974ef2aa10891236522bf1 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    161 schema:name Multimodal Imaging
    162 rdf:type schema:DefinedTerm
    163 Nbb03473d3670444aa9ce1b2358770040 rdf:first sg:person.012366760067.46
    164 rdf:rest rdf:nil
    165 Nbc956328c1854b598c6f913e7835b50e schema:name Radiology and Imaging Sciences, Clinical Center, NIH, Bethesda, MD, USA
    166 rdf:type schema:Organization
    167 Nc11c2ae723ae422cbd7fcad4cb9543fb schema:isbn 978-3-319-19991-7
    168 978-3-319-19992-4
    169 schema:name Information Processing in Medical Imaging
    170 rdf:type schema:Book
    171 Nc84fc4e7246440dea4fc5e091b5d766e schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    172 schema:name Algorithms
    173 rdf:type schema:DefinedTerm
    174 Nc9785404bb8f43f1beee3260537ed620 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    175 schema:name Radiopharmaceuticals
    176 rdf:type schema:DefinedTerm
    177 Nd3c3f31b2da14eca963a7378a743769b schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    178 schema:name Tomography, X-Ray Computed
    179 rdf:type schema:DefinedTerm
    180 Nd5370bdf496643ebb85713e56f0e46df schema:name Radiology and Imaging Sciences, Clinical Center, NIH, Bethesda, MD, USA
    181 rdf:type schema:Organization
    182 Nf25ff4331ea34327af60ca3b795d9686 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    183 schema:name Male
    184 rdf:type schema:DefinedTerm
    185 Nf6b401d4f6984ddeb00b255e25f3e67d rdf:first N48dbae6c2c8941cc8791ba9d5499b077
    186 rdf:rest rdf:nil
    187 Nfbc7b1eb41264ab8aae412307288e64a schema:name Radiology and Imaging Sciences, Clinical Center, NIH, Bethesda, MD, USA
    188 rdf:type schema:Organization
    189 Nfde97ad63e304deda6ae05c4d8f4972a rdf:first sg:person.011331054577.30
    190 rdf:rest N75e529be6e0e4e288a1719cb61a2be12
    191 anzsrc-for:08 schema:inDefinedTermSet anzsrc-for:
    192 schema:name Information and Computing Sciences
    193 rdf:type schema:DefinedTerm
    194 anzsrc-for:0801 schema:inDefinedTermSet anzsrc-for:
    195 schema:name Artificial Intelligence and Image Processing
    196 rdf:type schema:DefinedTerm
    197 sg:grant.4055703 http://pending.schema.org/fundedItem sg:pub.10.1007/978-3-319-19992-4_39
    198 rdf:type schema:MonetaryGrant
    199 sg:person.01106723443.05 schema:affiliation Nbc956328c1854b598c6f913e7835b50e
    200 schema:familyName Wong
    201 schema:givenName Ken C. L.
    202 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01106723443.05
    203 rdf:type schema:Person
    204 sg:person.011331054577.30 schema:affiliation Nd5370bdf496643ebb85713e56f0e46df
    205 schema:familyName Summers
    206 schema:givenName Ronald M.
    207 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011331054577.30
    208 rdf:type schema:Person
    209 sg:person.012366760067.46 schema:affiliation Nfbc7b1eb41264ab8aae412307288e64a
    210 schema:familyName Yao
    211 schema:givenName Jianhua
    212 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012366760067.46
    213 rdf:type schema:Person
    214 sg:person.0724132322.08 schema:affiliation https://www.grid.ac/institutes/grid.420086.8
    215 schema:familyName Kebebew
    216 schema:givenName Electron
    217 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0724132322.08
    218 rdf:type schema:Person
    219 sg:pub.10.1007/11566465_50 schema:sameAs https://app.dimensions.ai/details/publication/pub.1030322916
    220 https://doi.org/10.1007/11566465_50
    221 rdf:type schema:CreativeWork
    222 sg:pub.10.1007/978-3-319-10470-6_4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1038124814
    223 https://doi.org/10.1007/978-3-319-10470-6_4
    224 rdf:type schema:CreativeWork
    225 sg:pub.10.1007/978-3-642-22092-0_60 schema:sameAs https://app.dimensions.ai/details/publication/pub.1050939701
    226 https://doi.org/10.1007/978-3-642-22092-0_60
    227 rdf:type schema:CreativeWork
    228 sg:pub.10.1007/s00285-007-0139-x schema:sameAs https://app.dimensions.ai/details/publication/pub.1012292263
    229 https://doi.org/10.1007/s00285-007-0139-x
    230 rdf:type schema:CreativeWork
    231 sg:pub.10.1038/35098076 schema:sameAs https://app.dimensions.ai/details/publication/pub.1041527409
    232 https://doi.org/10.1038/35098076
    233 rdf:type schema:CreativeWork
    234 sg:pub.10.1038/ncb2548 schema:sameAs https://app.dimensions.ai/details/publication/pub.1007269666
    235 https://doi.org/10.1038/ncb2548
    236 rdf:type schema:CreativeWork
    237 https://doi.org/10.1016/0021-9290(94)90021-3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1028537101
    238 rdf:type schema:CreativeWork
    239 https://doi.org/10.1016/j.ijrobp.2009.02.003 schema:sameAs https://app.dimensions.ai/details/publication/pub.1045830687
    240 rdf:type schema:CreativeWork
    241 https://doi.org/10.1016/j.neuroimage.2006.01.015 schema:sameAs https://app.dimensions.ai/details/publication/pub.1045466943
    242 rdf:type schema:CreativeWork
    243 https://doi.org/10.1016/s0020-7683(02)00352-9 schema:sameAs https://app.dimensions.ai/details/publication/pub.1038728468
    244 rdf:type schema:CreativeWork
    245 https://doi.org/10.1067/msy.1998.91823 schema:sameAs https://app.dimensions.ai/details/publication/pub.1009819528
    246 rdf:type schema:CreativeWork
    247 https://doi.org/10.1109/tmi.2003.815867 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061694447
    248 rdf:type schema:CreativeWork
    249 https://doi.org/10.1109/tmi.2005.857217 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061694777
    250 rdf:type schema:CreativeWork
    251 https://doi.org/10.1109/tmi.2009.2026413 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061695435
    252 rdf:type schema:CreativeWork
    253 https://doi.org/10.1148/radiol.10090908 schema:sameAs https://app.dimensions.ai/details/publication/pub.1006642352
    254 rdf:type schema:CreativeWork
    255 https://doi.org/10.1634/theoncologist.2008-0259 schema:sameAs https://app.dimensions.ai/details/publication/pub.1020346669
    256 rdf:type schema:CreativeWork
    257 https://www.grid.ac/institutes/grid.420086.8 schema:alternateName National Institute of Arthritis and Musculoskeletal and Skin Diseases
    258 schema:name Endocrine Oncology Branch, National Cancer Institute, NIH, Bethesda, MD, USA
    259 rdf:type schema:Organization
     




    Preview window. Press ESC to close (or click here)


    ...