A Sentiment Analysis Classification Approach to Assess the Emotional Content of Photographs View Full Text


Ontology type: schema:Chapter     


Chapter Info

DATE

2015

AUTHORS

David Griol , José Manuel Molina

ABSTRACT

The integration of Ambient Intelligence and Sentiment Analysis provides mutual benefits. On the one hand, Sentiment Analysis may enable developing interfaces providing a more natural interaction with human-computer interfaces. On the other, AmI enables using context-awareness information to enhance the performance of the system, achieving a more efficient and proactive human-machine communication that can be dynamically adapted to the user’s state and the status of the environment. In this paper, we describe a novel Sentiment Analysis approach combining a lexicon-based model for specifying the set of emotions and a statistical methodology to identify the most relevant topics in the document that are the targets of the sentiments. Our proposal also includes an heuristic learning method that allows improving the initial knowledge considering the users’ feedback. We have integrated the proposed Sentiment Analysis approach into an Android-based mobile App that automatically assigns sentiments to pictures taking into account the description provided by the users. More... »

PAGES

105-113

References to SciGraph publications

  • 2012. The Hourglass of Emotions in COGNITIVE BEHAVIOURAL SYSTEMS
  • Book

    TITLE

    Ambient Intelligence - Software and Applications

    ISBN

    978-3-319-19694-7
    978-3-319-19695-4

    Author Affiliations

    Identifiers

    URI

    http://scigraph.springernature.com/pub.10.1007/978-3-319-19695-4_11

    DOI

    http://dx.doi.org/10.1007/978-3-319-19695-4_11

    DIMENSIONS

    https://app.dimensions.ai/details/publication/pub.1050312959


    Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
    Incoming Citations Browse incoming citations for this publication using opencitations.net

    JSON-LD is the canonical representation for SciGraph data.

    TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

    [
      {
        "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
        "about": [
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0801", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Artificial Intelligence and Image Processing", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/08", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Information and Computing Sciences", 
            "type": "DefinedTerm"
          }
        ], 
        "author": [
          {
            "affiliation": {
              "alternateName": "Carlos III University of Madrid", 
              "id": "https://www.grid.ac/institutes/grid.7840.b", 
              "name": [
                "Computer Science Department, Carlos III University of Madrid"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Griol", 
            "givenName": "David", 
            "id": "sg:person.013422741257.57", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013422741257.57"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Carlos III University of Madrid", 
              "id": "https://www.grid.ac/institutes/grid.7840.b", 
              "name": [
                "Computer Science Department, Carlos III University of Madrid"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Molina", 
            "givenName": "Jos\u00e9 Manuel", 
            "id": "sg:person.010563353054.10", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010563353054.10"
            ], 
            "type": "Person"
          }
        ], 
        "citation": [
          {
            "id": "https://doi.org/10.1016/j.asej.2014.04.011", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1002075763"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/978-3-642-34584-5_11", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1037012026", 
              "https://doi.org/10.1007/978-3-642-34584-5_11"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1109/icip.2008.4711702", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1095005504"
            ], 
            "type": "CreativeWork"
          }
        ], 
        "datePublished": "2015", 
        "datePublishedReg": "2015-01-01", 
        "description": "The integration of Ambient Intelligence and Sentiment Analysis provides mutual benefits. On the one hand, Sentiment Analysis may enable developing interfaces providing a more natural interaction with human-computer interfaces. On the other, AmI enables using context-awareness information to enhance the performance of the system, achieving a more efficient and proactive human-machine communication that can be dynamically adapted to the user\u2019s state and the status of the environment. In this paper, we describe a novel Sentiment Analysis approach combining a lexicon-based model for specifying the set of emotions and a statistical methodology to identify the most relevant topics in the document that are the targets of the sentiments. Our proposal also includes an heuristic learning method that allows improving the initial knowledge considering the users\u2019 feedback. We have integrated the proposed Sentiment Analysis approach into an Android-based mobile App that automatically assigns sentiments to pictures taking into account the description provided by the users.", 
        "editor": [
          {
            "familyName": "Mohamed", 
            "givenName": "Amr", 
            "type": "Person"
          }, 
          {
            "familyName": "Novais", 
            "givenName": "Paulo", 
            "type": "Person"
          }, 
          {
            "familyName": "Pereira", 
            "givenName": "Ant\u00f3nio", 
            "type": "Person"
          }, 
          {
            "familyName": "Villarrubia Gonz\u00e1lez", 
            "givenName": "Gabriel", 
            "type": "Person"
          }, 
          {
            "familyName": "Fern\u00e1ndez-Caballero", 
            "givenName": "Antonio", 
            "type": "Person"
          }
        ], 
        "genre": "chapter", 
        "id": "sg:pub.10.1007/978-3-319-19695-4_11", 
        "inLanguage": [
          "en"
        ], 
        "isAccessibleForFree": false, 
        "isPartOf": {
          "isbn": [
            "978-3-319-19694-7", 
            "978-3-319-19695-4"
          ], 
          "name": "Ambient Intelligence - Software and Applications", 
          "type": "Book"
        }, 
        "name": "A Sentiment Analysis Classification Approach to Assess the Emotional Content of Photographs", 
        "pagination": "105-113", 
        "productId": [
          {
            "name": "doi", 
            "type": "PropertyValue", 
            "value": [
              "10.1007/978-3-319-19695-4_11"
            ]
          }, 
          {
            "name": "readcube_id", 
            "type": "PropertyValue", 
            "value": [
              "efad2e38db1ed169fb26a8b6757e300a0be163e7cab79a368e37f37901af3d6a"
            ]
          }, 
          {
            "name": "dimensions_id", 
            "type": "PropertyValue", 
            "value": [
              "pub.1050312959"
            ]
          }
        ], 
        "publisher": {
          "location": "Cham", 
          "name": "Springer International Publishing", 
          "type": "Organisation"
        }, 
        "sameAs": [
          "https://doi.org/10.1007/978-3-319-19695-4_11", 
          "https://app.dimensions.ai/details/publication/pub.1050312959"
        ], 
        "sdDataset": "chapters", 
        "sdDatePublished": "2019-04-15T10:38", 
        "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
        "sdPublisher": {
          "name": "Springer Nature - SN SciGraph project", 
          "type": "Organization"
        }, 
        "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8659_00000274.jsonl", 
        "type": "Chapter", 
        "url": "http://link.springer.com/10.1007/978-3-319-19695-4_11"
      }
    ]
     

    Download the RDF metadata as:  json-ld nt turtle xml License info

    HOW TO GET THIS DATA PROGRAMMATICALLY:

    JSON-LD is a popular format for linked data which is fully compatible with JSON.

    curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/978-3-319-19695-4_11'

    N-Triples is a line-based linked data format ideal for batch operations.

    curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/978-3-319-19695-4_11'

    Turtle is a human-readable linked data format.

    curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/978-3-319-19695-4_11'

    RDF/XML is a standard XML format for linked data.

    curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/978-3-319-19695-4_11'


     

    This table displays all metadata directly associated to this object as RDF triples.

    102 TRIPLES      23 PREDICATES      30 URIs      20 LITERALS      8 BLANK NODES

    Subject Predicate Object
    1 sg:pub.10.1007/978-3-319-19695-4_11 schema:about anzsrc-for:08
    2 anzsrc-for:0801
    3 schema:author N38469ea5c93540728ea82e7b11b7558f
    4 schema:citation sg:pub.10.1007/978-3-642-34584-5_11
    5 https://doi.org/10.1016/j.asej.2014.04.011
    6 https://doi.org/10.1109/icip.2008.4711702
    7 schema:datePublished 2015
    8 schema:datePublishedReg 2015-01-01
    9 schema:description The integration of Ambient Intelligence and Sentiment Analysis provides mutual benefits. On the one hand, Sentiment Analysis may enable developing interfaces providing a more natural interaction with human-computer interfaces. On the other, AmI enables using context-awareness information to enhance the performance of the system, achieving a more efficient and proactive human-machine communication that can be dynamically adapted to the user’s state and the status of the environment. In this paper, we describe a novel Sentiment Analysis approach combining a lexicon-based model for specifying the set of emotions and a statistical methodology to identify the most relevant topics in the document that are the targets of the sentiments. Our proposal also includes an heuristic learning method that allows improving the initial knowledge considering the users’ feedback. We have integrated the proposed Sentiment Analysis approach into an Android-based mobile App that automatically assigns sentiments to pictures taking into account the description provided by the users.
    10 schema:editor Nb0b075ca2c4840c384c4c466c5c9113e
    11 schema:genre chapter
    12 schema:inLanguage en
    13 schema:isAccessibleForFree false
    14 schema:isPartOf N39ab2e0170cd4bb486f0dcd3f7403992
    15 schema:name A Sentiment Analysis Classification Approach to Assess the Emotional Content of Photographs
    16 schema:pagination 105-113
    17 schema:productId N26b56587151f4e699c339c62c631e9e0
    18 N876f77386f4947d099a5067ef6bbb18c
    19 Nbd490413fd2e4841a7fb833905681f78
    20 schema:publisher N18fdb14a883a464c9f5058e905188a1e
    21 schema:sameAs https://app.dimensions.ai/details/publication/pub.1050312959
    22 https://doi.org/10.1007/978-3-319-19695-4_11
    23 schema:sdDatePublished 2019-04-15T10:38
    24 schema:sdLicense https://scigraph.springernature.com/explorer/license/
    25 schema:sdPublisher Nb1a97009c90448338230a583d553fa14
    26 schema:url http://link.springer.com/10.1007/978-3-319-19695-4_11
    27 sgo:license sg:explorer/license/
    28 sgo:sdDataset chapters
    29 rdf:type schema:Chapter
    30 N18fdb14a883a464c9f5058e905188a1e schema:location Cham
    31 schema:name Springer International Publishing
    32 rdf:type schema:Organisation
    33 N26b56587151f4e699c339c62c631e9e0 schema:name doi
    34 schema:value 10.1007/978-3-319-19695-4_11
    35 rdf:type schema:PropertyValue
    36 N271787a934d443b6a403ede8d5e3179c rdf:first sg:person.010563353054.10
    37 rdf:rest rdf:nil
    38 N3201517cc6ea45349d5729a04cdbeb90 rdf:first Nb12d36f0e14849f796495627c7c020f7
    39 rdf:rest N70a0e06440454ecdace82ee939914c3a
    40 N334c06798dd64124814ac9279f4d6db3 schema:familyName Novais
    41 schema:givenName Paulo
    42 rdf:type schema:Person
    43 N348fac30c4054f9dad5ef19b5ad75157 schema:familyName Fernández-Caballero
    44 schema:givenName Antonio
    45 rdf:type schema:Person
    46 N38469ea5c93540728ea82e7b11b7558f rdf:first sg:person.013422741257.57
    47 rdf:rest N271787a934d443b6a403ede8d5e3179c
    48 N39ab2e0170cd4bb486f0dcd3f7403992 schema:isbn 978-3-319-19694-7
    49 978-3-319-19695-4
    50 schema:name Ambient Intelligence - Software and Applications
    51 rdf:type schema:Book
    52 N45180fefe4634949bbc4f0dcc716ce02 schema:familyName Villarrubia González
    53 schema:givenName Gabriel
    54 rdf:type schema:Person
    55 N578534156dfb48aba9fa58f6358b9542 rdf:first N334c06798dd64124814ac9279f4d6db3
    56 rdf:rest N3201517cc6ea45349d5729a04cdbeb90
    57 N70a0e06440454ecdace82ee939914c3a rdf:first N45180fefe4634949bbc4f0dcc716ce02
    58 rdf:rest Ndb1895de684a4c64a03fb72415f52fd2
    59 N8624b3b78a5347a89bd0fcf7ae0d7643 schema:familyName Mohamed
    60 schema:givenName Amr
    61 rdf:type schema:Person
    62 N876f77386f4947d099a5067ef6bbb18c schema:name dimensions_id
    63 schema:value pub.1050312959
    64 rdf:type schema:PropertyValue
    65 Nb0b075ca2c4840c384c4c466c5c9113e rdf:first N8624b3b78a5347a89bd0fcf7ae0d7643
    66 rdf:rest N578534156dfb48aba9fa58f6358b9542
    67 Nb12d36f0e14849f796495627c7c020f7 schema:familyName Pereira
    68 schema:givenName António
    69 rdf:type schema:Person
    70 Nb1a97009c90448338230a583d553fa14 schema:name Springer Nature - SN SciGraph project
    71 rdf:type schema:Organization
    72 Nbd490413fd2e4841a7fb833905681f78 schema:name readcube_id
    73 schema:value efad2e38db1ed169fb26a8b6757e300a0be163e7cab79a368e37f37901af3d6a
    74 rdf:type schema:PropertyValue
    75 Ndb1895de684a4c64a03fb72415f52fd2 rdf:first N348fac30c4054f9dad5ef19b5ad75157
    76 rdf:rest rdf:nil
    77 anzsrc-for:08 schema:inDefinedTermSet anzsrc-for:
    78 schema:name Information and Computing Sciences
    79 rdf:type schema:DefinedTerm
    80 anzsrc-for:0801 schema:inDefinedTermSet anzsrc-for:
    81 schema:name Artificial Intelligence and Image Processing
    82 rdf:type schema:DefinedTerm
    83 sg:person.010563353054.10 schema:affiliation https://www.grid.ac/institutes/grid.7840.b
    84 schema:familyName Molina
    85 schema:givenName José Manuel
    86 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010563353054.10
    87 rdf:type schema:Person
    88 sg:person.013422741257.57 schema:affiliation https://www.grid.ac/institutes/grid.7840.b
    89 schema:familyName Griol
    90 schema:givenName David
    91 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013422741257.57
    92 rdf:type schema:Person
    93 sg:pub.10.1007/978-3-642-34584-5_11 schema:sameAs https://app.dimensions.ai/details/publication/pub.1037012026
    94 https://doi.org/10.1007/978-3-642-34584-5_11
    95 rdf:type schema:CreativeWork
    96 https://doi.org/10.1016/j.asej.2014.04.011 schema:sameAs https://app.dimensions.ai/details/publication/pub.1002075763
    97 rdf:type schema:CreativeWork
    98 https://doi.org/10.1109/icip.2008.4711702 schema:sameAs https://app.dimensions.ai/details/publication/pub.1095005504
    99 rdf:type schema:CreativeWork
    100 https://www.grid.ac/institutes/grid.7840.b schema:alternateName Carlos III University of Madrid
    101 schema:name Computer Science Department, Carlos III University of Madrid
    102 rdf:type schema:Organization
     




    Preview window. Press ESC to close (or click here)


    ...