Do Human-Agent Conversations Resemble Human-Human Conversations? View Full Text


Ontology type: schema:Chapter     


Chapter Info

DATE

2015

AUTHORS

David Griol , José Manuel Molina

ABSTRACT

In this paper, we are interested in the problem of understanding human conversation structure in the context of human-agent and human-human interaction. We present a statistical methodology for detecting the structure of spoken dialogs based on a generative model learned using decision trees. To evaluate our approach we have used a dialog corpus collected from real users engaged in a problem solving task. The results of the evaluation show that automatic segmentation of spoken dialogs is very effective not only with models built using separately human-agent dialogs or human-human dialogs, but it is also possible to infer the task-related structure of human-human dialogs with a model learned using only human-agent dialogs. More... »

PAGES

159-166

References to SciGraph publications

  • 2005-06-17. Text segmentation by topic in RESEARCH AND ADVANCED TECHNOLOGY FOR DIGITAL LIBRARIES
  • 2003. Comparing Several Aspects of Human-Computer and Human-Human Dialogues in CURRENT AND NEW DIRECTIONS IN DISCOURSE AND DIALOGUE
  • Book

    TITLE

    Distributed Computing and Artificial Intelligence, 12th International Conference

    ISBN

    978-3-319-19637-4
    978-3-319-19638-1

    Author Affiliations

    Identifiers

    URI

    http://scigraph.springernature.com/pub.10.1007/978-3-319-19638-1_18

    DOI

    http://dx.doi.org/10.1007/978-3-319-19638-1_18

    DIMENSIONS

    https://app.dimensions.ai/details/publication/pub.1085983998


    Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
    Incoming Citations Browse incoming citations for this publication using opencitations.net

    JSON-LD is the canonical representation for SciGraph data.

    TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

    [
      {
        "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
        "about": [
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/1701", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Psychology", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/17", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Psychology and Cognitive Sciences", 
            "type": "DefinedTerm"
          }
        ], 
        "author": [
          {
            "affiliation": {
              "alternateName": "Carlos III University of Madrid", 
              "id": "https://www.grid.ac/institutes/grid.7840.b", 
              "name": [
                "Carlos III University of Madrid"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Griol", 
            "givenName": "David", 
            "id": "sg:person.013422741257.57", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013422741257.57"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Carlos III University of Madrid", 
              "id": "https://www.grid.ac/institutes/grid.7840.b", 
              "name": [
                "Carlos III University of Madrid"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Molina", 
            "givenName": "Jos\u00e9 Manuel", 
            "id": "sg:person.010563353054.10", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010563353054.10"
            ], 
            "type": "Person"
          }
        ], 
        "citation": [
          {
            "id": "sg:pub.10.1007/978-94-010-0019-2_7", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1032682744", 
              "https://doi.org/10.1007/978-94-010-0019-2_7"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/978-94-010-0019-2_7", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1032682744", 
              "https://doi.org/10.1007/978-94-010-0019-2_7"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.3115/981732.981734", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1034981865"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bfb0026725", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1046134237", 
              "https://doi.org/10.1007/bfb0026725"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bfb0026725", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1046134237", 
              "https://doi.org/10.1007/bfb0026725"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1109/tasl.2008.2001102", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1061516132"
            ], 
            "type": "CreativeWork"
          }
        ], 
        "datePublished": "2015", 
        "datePublishedReg": "2015-01-01", 
        "description": "In this paper, we are interested in the problem of understanding human conversation structure in the context of human-agent and human-human interaction. We present a statistical methodology for detecting the structure of spoken dialogs based on a generative model learned using decision trees. To evaluate our approach we have used a dialog corpus collected from real users engaged in a problem solving task. The results of the evaluation show that automatic segmentation of spoken dialogs is very effective not only with models built using separately human-agent dialogs or human-human dialogs, but it is also possible to infer the task-related structure of human-human dialogs with a model learned using only human-agent dialogs.", 
        "editor": [
          {
            "familyName": "Omatu", 
            "givenName": "Sigeru", 
            "type": "Person"
          }, 
          {
            "familyName": "Malluhi", 
            "givenName": "Qutaibah M.", 
            "type": "Person"
          }, 
          {
            "familyName": "Gonzalez", 
            "givenName": "Sara Rodr\u00edguez", 
            "type": "Person"
          }, 
          {
            "familyName": "Bocewicz", 
            "givenName": "Grzegorz", 
            "type": "Person"
          }, 
          {
            "familyName": "Bucciarelli", 
            "givenName": "Edgardo", 
            "type": "Person"
          }, 
          {
            "familyName": "Giulioni", 
            "givenName": "Gianfranco", 
            "type": "Person"
          }, 
          {
            "familyName": "Iqba", 
            "givenName": "Farkhund", 
            "type": "Person"
          }
        ], 
        "genre": "chapter", 
        "id": "sg:pub.10.1007/978-3-319-19638-1_18", 
        "inLanguage": [
          "en"
        ], 
        "isAccessibleForFree": false, 
        "isPartOf": {
          "isbn": [
            "978-3-319-19637-4", 
            "978-3-319-19638-1"
          ], 
          "name": "Distributed Computing and Artificial Intelligence, 12th International Conference", 
          "type": "Book"
        }, 
        "name": "Do Human-Agent Conversations Resemble Human-Human Conversations?", 
        "pagination": "159-166", 
        "productId": [
          {
            "name": "doi", 
            "type": "PropertyValue", 
            "value": [
              "10.1007/978-3-319-19638-1_18"
            ]
          }, 
          {
            "name": "readcube_id", 
            "type": "PropertyValue", 
            "value": [
              "8aefb0bfb09e26a265ca6a7e20fb4759c3ed126444eb29d43702dffc3c749d24"
            ]
          }, 
          {
            "name": "dimensions_id", 
            "type": "PropertyValue", 
            "value": [
              "pub.1085983998"
            ]
          }
        ], 
        "publisher": {
          "location": "Cham", 
          "name": "Springer International Publishing", 
          "type": "Organisation"
        }, 
        "sameAs": [
          "https://doi.org/10.1007/978-3-319-19638-1_18", 
          "https://app.dimensions.ai/details/publication/pub.1085983998"
        ], 
        "sdDataset": "chapters", 
        "sdDatePublished": "2019-04-15T13:32", 
        "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
        "sdPublisher": {
          "name": "Springer Nature - SN SciGraph project", 
          "type": "Organization"
        }, 
        "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8664_00000279.jsonl", 
        "type": "Chapter", 
        "url": "http://link.springer.com/10.1007/978-3-319-19638-1_18"
      }
    ]
     

    Download the RDF metadata as:  json-ld nt turtle xml License info

    HOW TO GET THIS DATA PROGRAMMATICALLY:

    JSON-LD is a popular format for linked data which is fully compatible with JSON.

    curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/978-3-319-19638-1_18'

    N-Triples is a line-based linked data format ideal for batch operations.

    curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/978-3-319-19638-1_18'

    Turtle is a human-readable linked data format.

    curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/978-3-319-19638-1_18'

    RDF/XML is a standard XML format for linked data.

    curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/978-3-319-19638-1_18'


     

    This table displays all metadata directly associated to this object as RDF triples.

    116 TRIPLES      23 PREDICATES      31 URIs      20 LITERALS      8 BLANK NODES

    Subject Predicate Object
    1 sg:pub.10.1007/978-3-319-19638-1_18 schema:about anzsrc-for:17
    2 anzsrc-for:1701
    3 schema:author Ne4df3ebfae3f4393b9777c0f2a1b46a9
    4 schema:citation sg:pub.10.1007/978-94-010-0019-2_7
    5 sg:pub.10.1007/bfb0026725
    6 https://doi.org/10.1109/tasl.2008.2001102
    7 https://doi.org/10.3115/981732.981734
    8 schema:datePublished 2015
    9 schema:datePublishedReg 2015-01-01
    10 schema:description In this paper, we are interested in the problem of understanding human conversation structure in the context of human-agent and human-human interaction. We present a statistical methodology for detecting the structure of spoken dialogs based on a generative model learned using decision trees. To evaluate our approach we have used a dialog corpus collected from real users engaged in a problem solving task. The results of the evaluation show that automatic segmentation of spoken dialogs is very effective not only with models built using separately human-agent dialogs or human-human dialogs, but it is also possible to infer the task-related structure of human-human dialogs with a model learned using only human-agent dialogs.
    11 schema:editor N0753267f68fc4b49af9d3c1b31ea2c7b
    12 schema:genre chapter
    13 schema:inLanguage en
    14 schema:isAccessibleForFree false
    15 schema:isPartOf N4215fd72e3ae4e01a81e1563308d4493
    16 schema:name Do Human-Agent Conversations Resemble Human-Human Conversations?
    17 schema:pagination 159-166
    18 schema:productId N1937bf9b97964f0586c956d23db4d8fc
    19 N54ed7683d0fc4c6fb7baef7a37c7634a
    20 Nc57711904108417fba6ab6e2932ee5dd
    21 schema:publisher Nc06ae16c07d24383ac73613e4d51a815
    22 schema:sameAs https://app.dimensions.ai/details/publication/pub.1085983998
    23 https://doi.org/10.1007/978-3-319-19638-1_18
    24 schema:sdDatePublished 2019-04-15T13:32
    25 schema:sdLicense https://scigraph.springernature.com/explorer/license/
    26 schema:sdPublisher Ncf3f7c79619243eaa0cece641ea1be7a
    27 schema:url http://link.springer.com/10.1007/978-3-319-19638-1_18
    28 sgo:license sg:explorer/license/
    29 sgo:sdDataset chapters
    30 rdf:type schema:Chapter
    31 N00bed9765a294fb7ba89964821bdd35c schema:familyName Omatu
    32 schema:givenName Sigeru
    33 rdf:type schema:Person
    34 N0753267f68fc4b49af9d3c1b31ea2c7b rdf:first N00bed9765a294fb7ba89964821bdd35c
    35 rdf:rest N41de1ed9a92c4309aaa793bba1ff55ca
    36 N0c70f19ca8c34cc0b7c510b12676718e schema:familyName Bocewicz
    37 schema:givenName Grzegorz
    38 rdf:type schema:Person
    39 N1937bf9b97964f0586c956d23db4d8fc schema:name doi
    40 schema:value 10.1007/978-3-319-19638-1_18
    41 rdf:type schema:PropertyValue
    42 N419a038eb4cf4106a10567d0ae14d773 schema:familyName Giulioni
    43 schema:givenName Gianfranco
    44 rdf:type schema:Person
    45 N41de1ed9a92c4309aaa793bba1ff55ca rdf:first Na56c9e6dd4b148dea8badde67d1a7745
    46 rdf:rest Ne3a37265307a4a9d9a98006fa423eb15
    47 N4215fd72e3ae4e01a81e1563308d4493 schema:isbn 978-3-319-19637-4
    48 978-3-319-19638-1
    49 schema:name Distributed Computing and Artificial Intelligence, 12th International Conference
    50 rdf:type schema:Book
    51 N54ed7683d0fc4c6fb7baef7a37c7634a schema:name dimensions_id
    52 schema:value pub.1085983998
    53 rdf:type schema:PropertyValue
    54 N659ccac94bd3457ca8c176c767ff5596 rdf:first N0c70f19ca8c34cc0b7c510b12676718e
    55 rdf:rest N9739a90b7ff84b86a846caa43c5cede1
    56 N67c52f0b24a14bc1b627828f5220692e rdf:first N7e81aa534cbb4ad9a9475c4ea38e33fe
    57 rdf:rest rdf:nil
    58 N7668ee4a1c3f4396a858d55d88f8471a schema:familyName Gonzalez
    59 schema:givenName Sara Rodríguez
    60 rdf:type schema:Person
    61 N7b526b50ad464be3901e28afff63c1e1 rdf:first sg:person.010563353054.10
    62 rdf:rest rdf:nil
    63 N7e81aa534cbb4ad9a9475c4ea38e33fe schema:familyName Iqba
    64 schema:givenName Farkhund
    65 rdf:type schema:Person
    66 N93277897b151477b87588192323b6aa7 rdf:first N419a038eb4cf4106a10567d0ae14d773
    67 rdf:rest N67c52f0b24a14bc1b627828f5220692e
    68 N9739a90b7ff84b86a846caa43c5cede1 rdf:first Nbaff28289efb401b82411203396d903b
    69 rdf:rest N93277897b151477b87588192323b6aa7
    70 Na56c9e6dd4b148dea8badde67d1a7745 schema:familyName Malluhi
    71 schema:givenName Qutaibah M.
    72 rdf:type schema:Person
    73 Nbaff28289efb401b82411203396d903b schema:familyName Bucciarelli
    74 schema:givenName Edgardo
    75 rdf:type schema:Person
    76 Nc06ae16c07d24383ac73613e4d51a815 schema:location Cham
    77 schema:name Springer International Publishing
    78 rdf:type schema:Organisation
    79 Nc57711904108417fba6ab6e2932ee5dd schema:name readcube_id
    80 schema:value 8aefb0bfb09e26a265ca6a7e20fb4759c3ed126444eb29d43702dffc3c749d24
    81 rdf:type schema:PropertyValue
    82 Ncf3f7c79619243eaa0cece641ea1be7a schema:name Springer Nature - SN SciGraph project
    83 rdf:type schema:Organization
    84 Ne3a37265307a4a9d9a98006fa423eb15 rdf:first N7668ee4a1c3f4396a858d55d88f8471a
    85 rdf:rest N659ccac94bd3457ca8c176c767ff5596
    86 Ne4df3ebfae3f4393b9777c0f2a1b46a9 rdf:first sg:person.013422741257.57
    87 rdf:rest N7b526b50ad464be3901e28afff63c1e1
    88 anzsrc-for:17 schema:inDefinedTermSet anzsrc-for:
    89 schema:name Psychology and Cognitive Sciences
    90 rdf:type schema:DefinedTerm
    91 anzsrc-for:1701 schema:inDefinedTermSet anzsrc-for:
    92 schema:name Psychology
    93 rdf:type schema:DefinedTerm
    94 sg:person.010563353054.10 schema:affiliation https://www.grid.ac/institutes/grid.7840.b
    95 schema:familyName Molina
    96 schema:givenName José Manuel
    97 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010563353054.10
    98 rdf:type schema:Person
    99 sg:person.013422741257.57 schema:affiliation https://www.grid.ac/institutes/grid.7840.b
    100 schema:familyName Griol
    101 schema:givenName David
    102 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013422741257.57
    103 rdf:type schema:Person
    104 sg:pub.10.1007/978-94-010-0019-2_7 schema:sameAs https://app.dimensions.ai/details/publication/pub.1032682744
    105 https://doi.org/10.1007/978-94-010-0019-2_7
    106 rdf:type schema:CreativeWork
    107 sg:pub.10.1007/bfb0026725 schema:sameAs https://app.dimensions.ai/details/publication/pub.1046134237
    108 https://doi.org/10.1007/bfb0026725
    109 rdf:type schema:CreativeWork
    110 https://doi.org/10.1109/tasl.2008.2001102 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061516132
    111 rdf:type schema:CreativeWork
    112 https://doi.org/10.3115/981732.981734 schema:sameAs https://app.dimensions.ai/details/publication/pub.1034981865
    113 rdf:type schema:CreativeWork
    114 https://www.grid.ac/institutes/grid.7840.b schema:alternateName Carlos III University of Madrid
    115 schema:name Carlos III University of Madrid
    116 rdf:type schema:Organization
     




    Preview window. Press ESC to close (or click here)


    ...