Squalenoylation: A Novel Technology for Anticancer and Antibiotic Drugs with Enhanced Activity View Full Text


Ontology type: schema:Chapter     


Chapter Info

DATE

2016

AUTHORS

Patrick Couvreur

ABSTRACT

This chapter describes the ‘squalenoylation’ technology, a platform for the discovery of new nanomedicines. The design of nanomedicines is generally based on the physical encapsulation, adsorption, or entrapment of a drug in a nanocarrier. This generally results in poor drug loading, and often an uncontrolled fast release of the drug (known as burst release). To overcome those limitations, the squalenoylation concept is based on the chemical (rather than physical) loading of drugs in nanomedicines. The idea is to link a biologically active compound (anticancer, antibiotic, antiviral, MRI imaging agent, etc.) to squalene, a natural and biocompatible lipid. Due to the unique, dynamically folded molecular conformation of squalene, the resulting squalene–drug bioconjugates self-assemble spontaneously in water to form nanoparticles. The resulting nanoassemblies have been shown to have enhanced pharmacological activity, and with reduced toxicity, thus paving the way to a new concept in the field of drug delivery. More... »

PAGES

253-272

References to SciGraph publications

Book

TITLE

Nanosciences and Nanotechnology

ISBN

978-3-319-19359-5
978-3-319-19360-1

Author Affiliations

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/978-3-319-19360-1_11

DOI

http://dx.doi.org/10.1007/978-3-319-19360-1_11

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1020031960


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/1007", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Nanotechnology", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/10", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Technology", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "University of Paris-Sud", 
          "id": "https://www.grid.ac/institutes/grid.5842.b", 
          "name": [
            "Institut Galien, UMR CNRS 8612, Universit\u00e9 Paris-Sud"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Couvreur", 
        "givenName": "Patrick", 
        "id": "sg:person.0760312615.72", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0760312615.72"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1016/j.nano.2011.02.012", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1002831061"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.nano.2011.02.012", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1002831061"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.biomaterials.2013.03.022", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1004424783"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.biomaterials.2013.03.022", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1004424783"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1351/pac198961030345", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1007680180"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1039/c0sm00342e", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1009497799"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1039/c0sm00342e", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1009497799"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1124/jpet.107.133751", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1017412825"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/nn1034197", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1018845144"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.jconrel.2011.07.038", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1019982164"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.jconrel.2011.07.038", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1019982164"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.jconrel.2010.07.120", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1023519903"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/adhm.201200099", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1024033897"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/adfm.200800705", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1024996509"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/nn500517a", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1029229420"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/anie.201207297", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1031797606"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nchembio.2007.5", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1031849415", 
          "https://doi.org/10.1038/nchembio.2007.5"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1073/pnas.1313459110", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1042517550"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/smll.200700731", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1049204113"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nnano.2014.274", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1051588906", 
          "https://doi.org/10.1038/nnano.2014.274"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/jm2000272", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1055952163"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/jm2000272", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1055952163"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/jm2000272", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1055952163"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/la800547s", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1056162642"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/la800547s", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1056162642"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/mp900099e", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1056214096"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/mp900099e", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1056214096"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/nl061942q", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1056216883"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/nl061942q", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1056216883"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/nn204928v", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1056224094"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2016", 
    "datePublishedReg": "2016-01-01", 
    "description": "This chapter describes the \u2018squalenoylation\u2019 technology, a platform for the discovery of new nanomedicines. The design of nanomedicines is generally based on the physical encapsulation, adsorption, or entrapment of a drug in a nanocarrier. This generally results in poor drug loading, and often an uncontrolled fast release of the drug (known as burst release). To overcome those limitations, the squalenoylation concept is based on the chemical (rather than physical) loading of drugs in nanomedicines. The idea is to link a biologically active compound (anticancer, antibiotic, antiviral, MRI imaging agent, etc.) to squalene, a natural and biocompatible lipid. Due to the unique, dynamically folded molecular conformation of squalene, the resulting squalene\u2013drug bioconjugates self-assemble spontaneously in water to form nanoparticles. The resulting nanoassemblies have been shown to have enhanced pharmacological activity, and with reduced toxicity, thus paving the way to a new concept in the field of drug delivery.", 
    "editor": [
      {
        "familyName": "Lourtioz", 
        "givenName": "Jean-Michel", 
        "type": "Person"
      }, 
      {
        "familyName": "Lahmani", 
        "givenName": "Marcel", 
        "type": "Person"
      }, 
      {
        "familyName": "Dupas-Haeberlin", 
        "givenName": "Claire", 
        "type": "Person"
      }, 
      {
        "familyName": "Hesto", 
        "givenName": "Patrice", 
        "type": "Person"
      }
    ], 
    "genre": "chapter", 
    "id": "sg:pub.10.1007/978-3-319-19360-1_11", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": {
      "isbn": [
        "978-3-319-19359-5", 
        "978-3-319-19360-1"
      ], 
      "name": "Nanosciences and Nanotechnology", 
      "type": "Book"
    }, 
    "name": "Squalenoylation: A Novel Technology for Anticancer and Antibiotic Drugs with Enhanced Activity", 
    "pagination": "253-272", 
    "productId": [
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/978-3-319-19360-1_11"
        ]
      }, 
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "5f71b8329316e2ac50b0bac8acc1c1fb355ddf82a337baeed866a97607e2c90c"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1020031960"
        ]
      }
    ], 
    "publisher": {
      "location": "Cham", 
      "name": "Springer International Publishing", 
      "type": "Organisation"
    }, 
    "sameAs": [
      "https://doi.org/10.1007/978-3-319-19360-1_11", 
      "https://app.dimensions.ai/details/publication/pub.1020031960"
    ], 
    "sdDataset": "chapters", 
    "sdDatePublished": "2019-04-15T10:33", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8659_00000255.jsonl", 
    "type": "Chapter", 
    "url": "http://link.springer.com/10.1007/978-3-319-19360-1_11"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/978-3-319-19360-1_11'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/978-3-319-19360-1_11'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/978-3-319-19360-1_11'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/978-3-319-19360-1_11'


 

This table displays all metadata directly associated to this object as RDF triples.

145 TRIPLES      23 PREDICATES      48 URIs      20 LITERALS      8 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/978-3-319-19360-1_11 schema:about anzsrc-for:10
2 anzsrc-for:1007
3 schema:author N48c89c397211455f81634e1c288afddc
4 schema:citation sg:pub.10.1038/nchembio.2007.5
5 sg:pub.10.1038/nnano.2014.274
6 https://doi.org/10.1002/adfm.200800705
7 https://doi.org/10.1002/adhm.201200099
8 https://doi.org/10.1002/anie.201207297
9 https://doi.org/10.1002/smll.200700731
10 https://doi.org/10.1016/j.biomaterials.2013.03.022
11 https://doi.org/10.1016/j.jconrel.2010.07.120
12 https://doi.org/10.1016/j.jconrel.2011.07.038
13 https://doi.org/10.1016/j.nano.2011.02.012
14 https://doi.org/10.1021/jm2000272
15 https://doi.org/10.1021/la800547s
16 https://doi.org/10.1021/mp900099e
17 https://doi.org/10.1021/nl061942q
18 https://doi.org/10.1021/nn1034197
19 https://doi.org/10.1021/nn204928v
20 https://doi.org/10.1021/nn500517a
21 https://doi.org/10.1039/c0sm00342e
22 https://doi.org/10.1073/pnas.1313459110
23 https://doi.org/10.1124/jpet.107.133751
24 https://doi.org/10.1351/pac198961030345
25 schema:datePublished 2016
26 schema:datePublishedReg 2016-01-01
27 schema:description This chapter describes the ‘squalenoylation’ technology, a platform for the discovery of new nanomedicines. The design of nanomedicines is generally based on the physical encapsulation, adsorption, or entrapment of a drug in a nanocarrier. This generally results in poor drug loading, and often an uncontrolled fast release of the drug (known as burst release). To overcome those limitations, the squalenoylation concept is based on the chemical (rather than physical) loading of drugs in nanomedicines. The idea is to link a biologically active compound (anticancer, antibiotic, antiviral, MRI imaging agent, etc.) to squalene, a natural and biocompatible lipid. Due to the unique, dynamically folded molecular conformation of squalene, the resulting squalene–drug bioconjugates self-assemble spontaneously in water to form nanoparticles. The resulting nanoassemblies have been shown to have enhanced pharmacological activity, and with reduced toxicity, thus paving the way to a new concept in the field of drug delivery.
28 schema:editor N2276ab3aea8c4be490a6641662f2d4f1
29 schema:genre chapter
30 schema:inLanguage en
31 schema:isAccessibleForFree false
32 schema:isPartOf N133dbbc5096148c9ad0528d80427f180
33 schema:name Squalenoylation: A Novel Technology for Anticancer and Antibiotic Drugs with Enhanced Activity
34 schema:pagination 253-272
35 schema:productId N1676ce6905344f4c895d996c6cfbffdb
36 N59c7bbb69d8a4899983f8249e093bf29
37 N9ee8286a4bc9444f89e8b27a89516e11
38 schema:publisher N5827ef10373445a38e67627cb794a603
39 schema:sameAs https://app.dimensions.ai/details/publication/pub.1020031960
40 https://doi.org/10.1007/978-3-319-19360-1_11
41 schema:sdDatePublished 2019-04-15T10:33
42 schema:sdLicense https://scigraph.springernature.com/explorer/license/
43 schema:sdPublisher N4896db3c0a99469d9337bab0522f37e8
44 schema:url http://link.springer.com/10.1007/978-3-319-19360-1_11
45 sgo:license sg:explorer/license/
46 sgo:sdDataset chapters
47 rdf:type schema:Chapter
48 N133dbbc5096148c9ad0528d80427f180 schema:isbn 978-3-319-19359-5
49 978-3-319-19360-1
50 schema:name Nanosciences and Nanotechnology
51 rdf:type schema:Book
52 N1676ce6905344f4c895d996c6cfbffdb schema:name dimensions_id
53 schema:value pub.1020031960
54 rdf:type schema:PropertyValue
55 N2276ab3aea8c4be490a6641662f2d4f1 rdf:first Nd02ebbecc8ca4cf9b1f146778d9969b1
56 rdf:rest N2de4d26b56ea43e7851d4d06752fadc8
57 N2de4d26b56ea43e7851d4d06752fadc8 rdf:first N2f6fe09f5b3e4e99887fed82ab6ae5e3
58 rdf:rest N3e7749fdb3c740c5a344f0ca62e9fde7
59 N2f6fe09f5b3e4e99887fed82ab6ae5e3 schema:familyName Lahmani
60 schema:givenName Marcel
61 rdf:type schema:Person
62 N3e7749fdb3c740c5a344f0ca62e9fde7 rdf:first N459ec9b55a0c4be887302c1f43c4e23d
63 rdf:rest Nc4b40968c85245379b1f2d924af16fc6
64 N459ec9b55a0c4be887302c1f43c4e23d schema:familyName Dupas-Haeberlin
65 schema:givenName Claire
66 rdf:type schema:Person
67 N4896db3c0a99469d9337bab0522f37e8 schema:name Springer Nature - SN SciGraph project
68 rdf:type schema:Organization
69 N48c89c397211455f81634e1c288afddc rdf:first sg:person.0760312615.72
70 rdf:rest rdf:nil
71 N5827ef10373445a38e67627cb794a603 schema:location Cham
72 schema:name Springer International Publishing
73 rdf:type schema:Organisation
74 N59c7bbb69d8a4899983f8249e093bf29 schema:name readcube_id
75 schema:value 5f71b8329316e2ac50b0bac8acc1c1fb355ddf82a337baeed866a97607e2c90c
76 rdf:type schema:PropertyValue
77 N9ee8286a4bc9444f89e8b27a89516e11 schema:name doi
78 schema:value 10.1007/978-3-319-19360-1_11
79 rdf:type schema:PropertyValue
80 Nc4b40968c85245379b1f2d924af16fc6 rdf:first Nd3f24b42a46c4e008c3088280f497ccd
81 rdf:rest rdf:nil
82 Nd02ebbecc8ca4cf9b1f146778d9969b1 schema:familyName Lourtioz
83 schema:givenName Jean-Michel
84 rdf:type schema:Person
85 Nd3f24b42a46c4e008c3088280f497ccd schema:familyName Hesto
86 schema:givenName Patrice
87 rdf:type schema:Person
88 anzsrc-for:10 schema:inDefinedTermSet anzsrc-for:
89 schema:name Technology
90 rdf:type schema:DefinedTerm
91 anzsrc-for:1007 schema:inDefinedTermSet anzsrc-for:
92 schema:name Nanotechnology
93 rdf:type schema:DefinedTerm
94 sg:person.0760312615.72 schema:affiliation https://www.grid.ac/institutes/grid.5842.b
95 schema:familyName Couvreur
96 schema:givenName Patrick
97 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0760312615.72
98 rdf:type schema:Person
99 sg:pub.10.1038/nchembio.2007.5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1031849415
100 https://doi.org/10.1038/nchembio.2007.5
101 rdf:type schema:CreativeWork
102 sg:pub.10.1038/nnano.2014.274 schema:sameAs https://app.dimensions.ai/details/publication/pub.1051588906
103 https://doi.org/10.1038/nnano.2014.274
104 rdf:type schema:CreativeWork
105 https://doi.org/10.1002/adfm.200800705 schema:sameAs https://app.dimensions.ai/details/publication/pub.1024996509
106 rdf:type schema:CreativeWork
107 https://doi.org/10.1002/adhm.201200099 schema:sameAs https://app.dimensions.ai/details/publication/pub.1024033897
108 rdf:type schema:CreativeWork
109 https://doi.org/10.1002/anie.201207297 schema:sameAs https://app.dimensions.ai/details/publication/pub.1031797606
110 rdf:type schema:CreativeWork
111 https://doi.org/10.1002/smll.200700731 schema:sameAs https://app.dimensions.ai/details/publication/pub.1049204113
112 rdf:type schema:CreativeWork
113 https://doi.org/10.1016/j.biomaterials.2013.03.022 schema:sameAs https://app.dimensions.ai/details/publication/pub.1004424783
114 rdf:type schema:CreativeWork
115 https://doi.org/10.1016/j.jconrel.2010.07.120 schema:sameAs https://app.dimensions.ai/details/publication/pub.1023519903
116 rdf:type schema:CreativeWork
117 https://doi.org/10.1016/j.jconrel.2011.07.038 schema:sameAs https://app.dimensions.ai/details/publication/pub.1019982164
118 rdf:type schema:CreativeWork
119 https://doi.org/10.1016/j.nano.2011.02.012 schema:sameAs https://app.dimensions.ai/details/publication/pub.1002831061
120 rdf:type schema:CreativeWork
121 https://doi.org/10.1021/jm2000272 schema:sameAs https://app.dimensions.ai/details/publication/pub.1055952163
122 rdf:type schema:CreativeWork
123 https://doi.org/10.1021/la800547s schema:sameAs https://app.dimensions.ai/details/publication/pub.1056162642
124 rdf:type schema:CreativeWork
125 https://doi.org/10.1021/mp900099e schema:sameAs https://app.dimensions.ai/details/publication/pub.1056214096
126 rdf:type schema:CreativeWork
127 https://doi.org/10.1021/nl061942q schema:sameAs https://app.dimensions.ai/details/publication/pub.1056216883
128 rdf:type schema:CreativeWork
129 https://doi.org/10.1021/nn1034197 schema:sameAs https://app.dimensions.ai/details/publication/pub.1018845144
130 rdf:type schema:CreativeWork
131 https://doi.org/10.1021/nn204928v schema:sameAs https://app.dimensions.ai/details/publication/pub.1056224094
132 rdf:type schema:CreativeWork
133 https://doi.org/10.1021/nn500517a schema:sameAs https://app.dimensions.ai/details/publication/pub.1029229420
134 rdf:type schema:CreativeWork
135 https://doi.org/10.1039/c0sm00342e schema:sameAs https://app.dimensions.ai/details/publication/pub.1009497799
136 rdf:type schema:CreativeWork
137 https://doi.org/10.1073/pnas.1313459110 schema:sameAs https://app.dimensions.ai/details/publication/pub.1042517550
138 rdf:type schema:CreativeWork
139 https://doi.org/10.1124/jpet.107.133751 schema:sameAs https://app.dimensions.ai/details/publication/pub.1017412825
140 rdf:type schema:CreativeWork
141 https://doi.org/10.1351/pac198961030345 schema:sameAs https://app.dimensions.ai/details/publication/pub.1007680180
142 rdf:type schema:CreativeWork
143 https://www.grid.ac/institutes/grid.5842.b schema:alternateName University of Paris-Sud
144 schema:name Institut Galien, UMR CNRS 8612, Université Paris-Sud
145 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...