Random Girds-Based Threshold Visual Secret Sharing with Improved Contrast by Boolean Operations View Full Text


Ontology type: schema:Chapter     


Chapter Info

DATE

2015-05-28

AUTHORS

Xuehu Yan , Guohui Chen , Ching-Nung Yang , Song-Ruei Cai

ABSTRACT

In recent years, visual secret sharing (VSS) by random grids (RG) has gained much attention since it can avoid pixel expansion problem as well as has no codebook needed, which has acceptable visual quality based on the internal structure of the designed scheme. Till now, the previous schemes still suffer from low visual quality, from our point of view, and visual quality decreases fast when n increases. In this paper, a new RG-based VSS with improved visual quality based on Boolean operations is proposed, based on two different quality-improved approaches and gaining both advantages. The proposed scheme has several features such as (k, n) threshold, no codebook design, and no pixel expansion. Moreover, it has higher contrast compared with related schemes. More... »

PAGES

319-332

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/978-3-319-19321-2_24

DOI

http://dx.doi.org/10.1007/978-3-319-19321-2_24

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1033037532


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/08", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Information and Computing Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0801", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Artificial Intelligence and Image Processing", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "School of Computer Science and Technology, Harbin Institute of Technology, 150080, Harbin, China", 
          "id": "http://www.grid.ac/institutes/grid.19373.3f", 
          "name": [
            "School of Computer Science and Technology, Harbin Institute of Technology, 150080, Harbin, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Yan", 
        "givenName": "Xuehu", 
        "id": "sg:person.010467364517.31", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010467364517.31"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Hebei University of Science and Technology, 050018, Shi Jiazhuang, China", 
          "id": "http://www.grid.ac/institutes/grid.462323.2", 
          "name": [
            "Hebei University of Science and Technology, 050018, Shi Jiazhuang, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Chen", 
        "givenName": "Guohui", 
        "id": "sg:person.012634637662.53", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012634637662.53"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Department of CSIE, National Dong Hwa University, 974, Hualien, Taiwan", 
          "id": "http://www.grid.ac/institutes/grid.260567.0", 
          "name": [
            "Department of CSIE, National Dong Hwa University, 974, Hualien, Taiwan"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Yang", 
        "givenName": "Ching-Nung", 
        "id": "sg:person.012350400311.86", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012350400311.86"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Department of CSIE, National Dong Hwa University, 974, Hualien, Taiwan", 
          "id": "http://www.grid.ac/institutes/grid.260567.0", 
          "name": [
            "Department of CSIE, National Dong Hwa University, 974, Hualien, Taiwan"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Cai", 
        "givenName": "Song-Ruei", 
        "id": "sg:person.011235554527.03", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011235554527.03"
        ], 
        "type": "Person"
      }
    ], 
    "datePublished": "2015-05-28", 
    "datePublishedReg": "2015-05-28", 
    "description": "In recent years, visual secret sharing (VSS) by random grids (RG) has gained much attention since it can avoid pixel expansion problem as well as has no codebook needed, which has acceptable visual quality based on the internal structure of the designed scheme. Till now, the previous schemes still suffer from low visual quality, from our point of view, and visual quality decreases fast when n increases. In this paper, a new RG-based VSS with improved visual quality based on Boolean operations is proposed, based on two different quality-improved approaches and gaining both advantages. The proposed scheme has several features such as (k, n) threshold, no codebook design, and no pixel expansion. Moreover, it has higher contrast compared with related schemes.", 
    "editor": [
      {
        "familyName": "Shi", 
        "givenName": "Yun-Qing", 
        "type": "Person"
      }, 
      {
        "familyName": "Kim", 
        "givenName": "Hyoung Joong", 
        "type": "Person"
      }, 
      {
        "familyName": "P\u00e9rez-Gonz\u00e1lez", 
        "givenName": "Fernando", 
        "type": "Person"
      }, 
      {
        "familyName": "Yang", 
        "givenName": "Ching-Nung", 
        "type": "Person"
      }
    ], 
    "genre": "chapter", 
    "id": "sg:pub.10.1007/978-3-319-19321-2_24", 
    "isAccessibleForFree": false, 
    "isPartOf": {
      "isbn": [
        "978-3-319-19320-5", 
        "978-3-319-19321-2"
      ], 
      "name": "Digital-Forensics and Watermarking", 
      "type": "Book"
    }, 
    "keywords": [
      "visual secret sharing", 
      "random grids", 
      "visual quality", 
      "secret sharing", 
      "threshold visual secret sharing", 
      "pixel expansion problem", 
      "new RG", 
      "low visual quality", 
      "acceptable visual quality", 
      "Boolean operations", 
      "improved visual quality", 
      "pixel expansion", 
      "related schemes", 
      "previous schemes", 
      "codebook design", 
      "sharing", 
      "scheme", 
      "expansion problem", 
      "recent years", 
      "codebook", 
      "operation", 
      "gird", 
      "quality", 
      "point of view", 
      "grid", 
      "features", 
      "advantages", 
      "design", 
      "internal structure", 
      "high contrast", 
      "view", 
      "attention", 
      "point", 
      "threshold", 
      "structure", 
      "n increases", 
      "contrast", 
      "years", 
      "expansion", 
      "increase", 
      "problem", 
      "paper", 
      "approach"
    ], 
    "name": "Random Girds-Based Threshold Visual Secret Sharing with Improved Contrast by Boolean Operations", 
    "pagination": "319-332", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1033037532"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/978-3-319-19321-2_24"
        ]
      }
    ], 
    "publisher": {
      "name": "Springer Nature", 
      "type": "Organisation"
    }, 
    "sameAs": [
      "https://doi.org/10.1007/978-3-319-19321-2_24", 
      "https://app.dimensions.ai/details/publication/pub.1033037532"
    ], 
    "sdDataset": "chapters", 
    "sdDatePublished": "2022-12-01T06:52", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20221201/entities/gbq_results/chapter/chapter_385.jsonl", 
    "type": "Chapter", 
    "url": "https://doi.org/10.1007/978-3-319-19321-2_24"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/978-3-319-19321-2_24'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/978-3-319-19321-2_24'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/978-3-319-19321-2_24'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/978-3-319-19321-2_24'


 

This table displays all metadata directly associated to this object as RDF triples.

144 TRIPLES      22 PREDICATES      67 URIs      60 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/978-3-319-19321-2_24 schema:about anzsrc-for:08
2 anzsrc-for:0801
3 schema:author Nba346d2344144362ba9921beb1cd5d83
4 schema:datePublished 2015-05-28
5 schema:datePublishedReg 2015-05-28
6 schema:description In recent years, visual secret sharing (VSS) by random grids (RG) has gained much attention since it can avoid pixel expansion problem as well as has no codebook needed, which has acceptable visual quality based on the internal structure of the designed scheme. Till now, the previous schemes still suffer from low visual quality, from our point of view, and visual quality decreases fast when n increases. In this paper, a new RG-based VSS with improved visual quality based on Boolean operations is proposed, based on two different quality-improved approaches and gaining both advantages. The proposed scheme has several features such as (k, n) threshold, no codebook design, and no pixel expansion. Moreover, it has higher contrast compared with related schemes.
7 schema:editor N9e32ad64c7d14cd5bff84f5629f8fbbd
8 schema:genre chapter
9 schema:isAccessibleForFree false
10 schema:isPartOf Nd16782a3068c41f5bcf534d8839c9125
11 schema:keywords Boolean operations
12 acceptable visual quality
13 advantages
14 approach
15 attention
16 codebook
17 codebook design
18 contrast
19 design
20 expansion
21 expansion problem
22 features
23 gird
24 grid
25 high contrast
26 improved visual quality
27 increase
28 internal structure
29 low visual quality
30 n increases
31 new RG
32 operation
33 paper
34 pixel expansion
35 pixel expansion problem
36 point
37 point of view
38 previous schemes
39 problem
40 quality
41 random grids
42 recent years
43 related schemes
44 scheme
45 secret sharing
46 sharing
47 structure
48 threshold
49 threshold visual secret sharing
50 view
51 visual quality
52 visual secret sharing
53 years
54 schema:name Random Girds-Based Threshold Visual Secret Sharing with Improved Contrast by Boolean Operations
55 schema:pagination 319-332
56 schema:productId N21f571bc1e76487f94e66e7c24bd4b6d
57 N42711df0dcf24b559849d54cf84a2ce2
58 schema:publisher Nba6381eee4094d1f9186f5035c5dd431
59 schema:sameAs https://app.dimensions.ai/details/publication/pub.1033037532
60 https://doi.org/10.1007/978-3-319-19321-2_24
61 schema:sdDatePublished 2022-12-01T06:52
62 schema:sdLicense https://scigraph.springernature.com/explorer/license/
63 schema:sdPublisher Ne8f20a80e97648a3a0ddfb97fac1ba44
64 schema:url https://doi.org/10.1007/978-3-319-19321-2_24
65 sgo:license sg:explorer/license/
66 sgo:sdDataset chapters
67 rdf:type schema:Chapter
68 N0119a3376c78448285174b2cdaa3bbf0 schema:familyName Yang
69 schema:givenName Ching-Nung
70 rdf:type schema:Person
71 N06d92142cc8d49fe89a8b2a902480ddd schema:familyName Kim
72 schema:givenName Hyoung Joong
73 rdf:type schema:Person
74 N21f571bc1e76487f94e66e7c24bd4b6d schema:name doi
75 schema:value 10.1007/978-3-319-19321-2_24
76 rdf:type schema:PropertyValue
77 N2e5f5f3acb86423e9ad23ec083fee9b3 schema:familyName Shi
78 schema:givenName Yun-Qing
79 rdf:type schema:Person
80 N42711df0dcf24b559849d54cf84a2ce2 schema:name dimensions_id
81 schema:value pub.1033037532
82 rdf:type schema:PropertyValue
83 N46d9909dc3a645e891bf03738783ab45 rdf:first N0119a3376c78448285174b2cdaa3bbf0
84 rdf:rest rdf:nil
85 N799742fb183f420e8b56c15e9fd77d15 rdf:first sg:person.011235554527.03
86 rdf:rest rdf:nil
87 N9d8a01d503a84abab56fe41d568fc088 rdf:first Nd2d5d1996abf4819a36218afe9b5844a
88 rdf:rest N46d9909dc3a645e891bf03738783ab45
89 N9e32ad64c7d14cd5bff84f5629f8fbbd rdf:first N2e5f5f3acb86423e9ad23ec083fee9b3
90 rdf:rest Ndacd28b311cb4617adeb596c3fe3005d
91 Nba346d2344144362ba9921beb1cd5d83 rdf:first sg:person.010467364517.31
92 rdf:rest Nc42f7db9283c4d77bafb03d97ddf707e
93 Nba6381eee4094d1f9186f5035c5dd431 schema:name Springer Nature
94 rdf:type schema:Organisation
95 Nc42f7db9283c4d77bafb03d97ddf707e rdf:first sg:person.012634637662.53
96 rdf:rest Nea3307a2918b4d529c7661e2a08a6326
97 Nd16782a3068c41f5bcf534d8839c9125 schema:isbn 978-3-319-19320-5
98 978-3-319-19321-2
99 schema:name Digital-Forensics and Watermarking
100 rdf:type schema:Book
101 Nd2d5d1996abf4819a36218afe9b5844a schema:familyName Pérez-González
102 schema:givenName Fernando
103 rdf:type schema:Person
104 Ndacd28b311cb4617adeb596c3fe3005d rdf:first N06d92142cc8d49fe89a8b2a902480ddd
105 rdf:rest N9d8a01d503a84abab56fe41d568fc088
106 Ne8f20a80e97648a3a0ddfb97fac1ba44 schema:name Springer Nature - SN SciGraph project
107 rdf:type schema:Organization
108 Nea3307a2918b4d529c7661e2a08a6326 rdf:first sg:person.012350400311.86
109 rdf:rest N799742fb183f420e8b56c15e9fd77d15
110 anzsrc-for:08 schema:inDefinedTermSet anzsrc-for:
111 schema:name Information and Computing Sciences
112 rdf:type schema:DefinedTerm
113 anzsrc-for:0801 schema:inDefinedTermSet anzsrc-for:
114 schema:name Artificial Intelligence and Image Processing
115 rdf:type schema:DefinedTerm
116 sg:person.010467364517.31 schema:affiliation grid-institutes:grid.19373.3f
117 schema:familyName Yan
118 schema:givenName Xuehu
119 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010467364517.31
120 rdf:type schema:Person
121 sg:person.011235554527.03 schema:affiliation grid-institutes:grid.260567.0
122 schema:familyName Cai
123 schema:givenName Song-Ruei
124 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011235554527.03
125 rdf:type schema:Person
126 sg:person.012350400311.86 schema:affiliation grid-institutes:grid.260567.0
127 schema:familyName Yang
128 schema:givenName Ching-Nung
129 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012350400311.86
130 rdf:type schema:Person
131 sg:person.012634637662.53 schema:affiliation grid-institutes:grid.462323.2
132 schema:familyName Chen
133 schema:givenName Guohui
134 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012634637662.53
135 rdf:type schema:Person
136 grid-institutes:grid.19373.3f schema:alternateName School of Computer Science and Technology, Harbin Institute of Technology, 150080, Harbin, China
137 schema:name School of Computer Science and Technology, Harbin Institute of Technology, 150080, Harbin, China
138 rdf:type schema:Organization
139 grid-institutes:grid.260567.0 schema:alternateName Department of CSIE, National Dong Hwa University, 974, Hualien, Taiwan
140 schema:name Department of CSIE, National Dong Hwa University, 974, Hualien, Taiwan
141 rdf:type schema:Organization
142 grid-institutes:grid.462323.2 schema:alternateName Hebei University of Science and Technology, 050018, Shi Jiazhuang, China
143 schema:name Hebei University of Science and Technology, 050018, Shi Jiazhuang, China
144 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...