@prefix ns1: . @prefix ns2: . @prefix rdf: . @prefix rdfs: . @prefix xml: . @prefix xsd: . a ns1:Chapter ; ns1:about , ; ns1:author ( ) ; ns1:datePublished "2015-11-18" ; ns1:datePublishedReg "2015-11-18" ; ns1:description """We review the \\documentclass[12pt]{minimal} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{mathrsfs} \\usepackage{upgreek} \\setlength{\\oddsidemargin}{-69pt} \\begin{document}$$\\beta$$\\end{document}-deformed matrix model approach to the correspondence between four-dimensional \\documentclass[12pt]{minimal} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{mathrsfs} \\usepackage{upgreek} \\setlength{\\oddsidemargin}{-69pt} \\begin{document}$$\\mathcal {N}=2$$\\end{document} gauge theories and two-dimensional conformal field theories. The \\documentclass[12pt]{minimal} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{mathrsfs} \\usepackage{upgreek} \\setlength{\\oddsidemargin}{-69pt} \\begin{document}$$\\beta$$\\end{document}-deformed matrix model equipped with the log-type potential is obtained as a free field (Dotsenko-Fateev) representation of the conformal block of chiral conformal algebra in two dimensions, with the precise choice of integration contours. After reviewing various matrix models related to the conformal field theories in two-dimensions, we study the large N limit corresponding to turning off the Omega-background \\documentclass[12pt]{minimal} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{mathrsfs} \\usepackage{upgreek} \\setlength{\\oddsidemargin}{-69pt} \\begin{document}$$\\epsilon _{1}, \\epsilon _{2} \\rightarrow 0$$\\end{document}. We show that the large N analysis produces the purely gauge theory results. Furthermore we discuss the Nekrasov-Shatashvili limit (\\documentclass[12pt]{minimal} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{mathrsfs} \\usepackage{upgreek} \\setlength{\\oddsidemargin}{-69pt} \\begin{document}$$\\epsilon _{2} \\rightarrow 0$$\\end{document}) by which we see the connection with the quantum integrable system. We then perform the explicit integration of the matrix model. With the precise choice of the contours we see that this reproduces the expansion of the conformal block and also the Nekrasov partition function. This is a contribution to the special volume on the 2d/4d correspondence, edited by J. Teschner.""" ; ns1:editor ( [ a ns1:Person ; ns1:familyName "Teschner" ; ns1:givenName "Jörg" ] ) ; ns1:genre "chapter" ; ns1:isAccessibleForFree true ; ns1:isPartOf [ a ns1:Book ; ns1:isbn "978-3-319-18768-6", "978-3-319-18769-3" ; ns1:name "New Dualities of Supersymmetric Gauge Theories" ] ; ns1:keywords "J. Teschner", "N analysis", "N limit", "Nekrasov partition function", "Nekrasov-Shatashvili limit", "Teschner", "algebra", "analysis", "approach", "block", "choice", "conformal algebra", "conformal blocks", "conformal field theory", "connection", "contours", "contribution", "correspondence", "deformed matrix model", "dimensions", "expansion", "explicit integration", "field representation", "field theory", "free field representation", "function", "gauge theory results", "integrable systems", "integration", "integration contour", "large N analysis", "large N limit", "limit", "matrix model", "matrix model approach", "model", "model approach", "partition function", "potential", "precise choice", "quantum integrable systems", "representation", "results", "special volume", "system", "theory", "theory results", "two-dimensional conformal field theory", "two-dimensions", "volume" ; ns1:name "-Deformed Matrix Models and 2d/4d Correspondence" ; ns1:pagination "121-157" ; ns1:productId [ a ns1:PropertyValue ; ns1:name "doi" ; ns1:value "10.1007/978-3-319-18769-3_5" ], [ a ns1:PropertyValue ; ns1:name "dimensions_id" ; ns1:value "pub.1045499205" ] ; ns1:publisher [ a ns1:Organisation ; ns1:name "Springer Nature" ] ; ns1:sameAs , ; ns1:sdDatePublished "2022-08-04T17:19" ; ns1:sdLicense "https://scigraph.springernature.com/explorer/license/" ; ns1:sdPublisher [ a ns1:Organization ; ns1:name "Springer Nature - SN SciGraph project" ] ; ns1:url "https://doi.org/10.1007/978-3-319-18769-3_5" ; ns2:license ; ns2:sdDataset "chapters" . a ns1:DefinedTerm ; ns1:inDefinedTermSet ; ns1:name "Mathematical Sciences" . a ns1:DefinedTerm ; ns1:inDefinedTermSet ; ns1:name "Mathematical Physics" . a ns1:Person ; ns1:affiliation ; ns1:familyName "Maruyoshi" ; ns1:givenName "Kazunobu" ; ns1:sameAs . a ns1:Organization ; ns1:alternateName "The Blackett Laboratory, Imperial Collage London, Prince Concert Rd, SW7 2AZ, London, UK" ; ns1:name "The Blackett Laboratory, Imperial Collage London, Prince Concert Rd, SW7 2AZ, London, UK" .