-Deformed Matrix Models and 2d/4d Correspondence View Full Text


Ontology type: schema:Chapter      Open Access: True


Chapter Info

DATE

2015-11-18

AUTHORS

Kazunobu Maruyoshi

ABSTRACT

We review the \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\beta $$\end{document}-deformed matrix model approach to the correspondence between four-dimensional \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathcal {N}=2$$\end{document} gauge theories and two-dimensional conformal field theories. The \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\beta $$\end{document}-deformed matrix model equipped with the log-type potential is obtained as a free field (Dotsenko-Fateev) representation of the conformal block of chiral conformal algebra in two dimensions, with the precise choice of integration contours. After reviewing various matrix models related to the conformal field theories in two-dimensions, we study the large N limit corresponding to turning off the Omega-background \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\epsilon _{1}, \epsilon _{2} \rightarrow 0$$\end{document}. We show that the large N analysis produces the purely gauge theory results. Furthermore we discuss the Nekrasov-Shatashvili limit (\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\epsilon _{2} \rightarrow 0$$\end{document}) by which we see the connection with the quantum integrable system. We then perform the explicit integration of the matrix model. With the precise choice of the contours we see that this reproduces the expansion of the conformal block and also the Nekrasov partition function. This is a contribution to the special volume on the 2d/4d correspondence, edited by J. Teschner. More... »

PAGES

121-157

Book

TITLE

New Dualities of Supersymmetric Gauge Theories

ISBN

978-3-319-18768-6
978-3-319-18769-3

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/978-3-319-18769-3_5

DOI

http://dx.doi.org/10.1007/978-3-319-18769-3_5

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1045499205


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/01", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Mathematical Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0105", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Mathematical Physics", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "The Blackett Laboratory, Imperial Collage London, Prince Concert Rd, SW7 2AZ, London, UK", 
          "id": "http://www.grid.ac/institutes/None", 
          "name": [
            "The Blackett Laboratory, Imperial Collage London, Prince Concert Rd, SW7 2AZ, London, UK"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Maruyoshi", 
        "givenName": "Kazunobu", 
        "id": "sg:person.014757666656.30", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014757666656.30"
        ], 
        "type": "Person"
      }
    ], 
    "datePublished": "2015-11-18", 
    "datePublishedReg": "2015-11-18", 
    "description": "We review the \\documentclass[12pt]{minimal}\n\t\t\t\t\\usepackage{amsmath}\n\t\t\t\t\\usepackage{wasysym}\n\t\t\t\t\\usepackage{amsfonts}\n\t\t\t\t\\usepackage{amssymb}\n\t\t\t\t\\usepackage{amsbsy}\n\t\t\t\t\\usepackage{mathrsfs}\n\t\t\t\t\\usepackage{upgreek}\n\t\t\t\t\\setlength{\\oddsidemargin}{-69pt}\n\t\t\t\t\\begin{document}$$\\beta $$\\end{document}-deformed matrix model approach to the correspondence between four-dimensional \\documentclass[12pt]{minimal}\n\t\t\t\t\\usepackage{amsmath}\n\t\t\t\t\\usepackage{wasysym}\n\t\t\t\t\\usepackage{amsfonts}\n\t\t\t\t\\usepackage{amssymb}\n\t\t\t\t\\usepackage{amsbsy}\n\t\t\t\t\\usepackage{mathrsfs}\n\t\t\t\t\\usepackage{upgreek}\n\t\t\t\t\\setlength{\\oddsidemargin}{-69pt}\n\t\t\t\t\\begin{document}$$\\mathcal {N}=2$$\\end{document} gauge theories and two-dimensional conformal field theories. The \\documentclass[12pt]{minimal}\n\t\t\t\t\\usepackage{amsmath}\n\t\t\t\t\\usepackage{wasysym}\n\t\t\t\t\\usepackage{amsfonts}\n\t\t\t\t\\usepackage{amssymb}\n\t\t\t\t\\usepackage{amsbsy}\n\t\t\t\t\\usepackage{mathrsfs}\n\t\t\t\t\\usepackage{upgreek}\n\t\t\t\t\\setlength{\\oddsidemargin}{-69pt}\n\t\t\t\t\\begin{document}$$\\beta $$\\end{document}-deformed matrix model equipped with the log-type potential is obtained as a free field (Dotsenko-Fateev) representation of the conformal block of chiral conformal algebra in two dimensions, with the precise choice of integration contours. After reviewing various matrix models related to the conformal field theories in two-dimensions, we study the large N limit corresponding to turning off the Omega-background \\documentclass[12pt]{minimal}\n\t\t\t\t\\usepackage{amsmath}\n\t\t\t\t\\usepackage{wasysym}\n\t\t\t\t\\usepackage{amsfonts}\n\t\t\t\t\\usepackage{amssymb}\n\t\t\t\t\\usepackage{amsbsy}\n\t\t\t\t\\usepackage{mathrsfs}\n\t\t\t\t\\usepackage{upgreek}\n\t\t\t\t\\setlength{\\oddsidemargin}{-69pt}\n\t\t\t\t\\begin{document}$$\\epsilon _{1}, \\epsilon _{2} \\rightarrow 0$$\\end{document}. We show that the large N analysis produces the purely gauge theory results. Furthermore we discuss the Nekrasov-Shatashvili limit (\\documentclass[12pt]{minimal}\n\t\t\t\t\\usepackage{amsmath}\n\t\t\t\t\\usepackage{wasysym}\n\t\t\t\t\\usepackage{amsfonts}\n\t\t\t\t\\usepackage{amssymb}\n\t\t\t\t\\usepackage{amsbsy}\n\t\t\t\t\\usepackage{mathrsfs}\n\t\t\t\t\\usepackage{upgreek}\n\t\t\t\t\\setlength{\\oddsidemargin}{-69pt}\n\t\t\t\t\\begin{document}$$\\epsilon _{2} \\rightarrow 0$$\\end{document}) by which we see the connection with the quantum integrable system. We then perform the explicit integration of the matrix model. With the precise choice of the contours we see that this reproduces the expansion of the conformal block and also the Nekrasov partition function. This is a contribution to the special volume on the 2d/4d correspondence, edited by J. Teschner.", 
    "editor": [
      {
        "familyName": "Teschner", 
        "givenName": "J\u00f6rg", 
        "type": "Person"
      }
    ], 
    "genre": "chapter", 
    "id": "sg:pub.10.1007/978-3-319-18769-3_5", 
    "isAccessibleForFree": true, 
    "isPartOf": {
      "isbn": [
        "978-3-319-18768-6", 
        "978-3-319-18769-3"
      ], 
      "name": "New Dualities of Supersymmetric Gauge Theories", 
      "type": "Book"
    }, 
    "keywords": [
      "conformal field theory", 
      "matrix model", 
      "field theory", 
      "conformal blocks", 
      "two-dimensional conformal field theory", 
      "quantum integrable systems", 
      "matrix model approach", 
      "free field representation", 
      "gauge theory results", 
      "large N limit", 
      "deformed matrix model", 
      "Nekrasov-Shatashvili limit", 
      "precise choice", 
      "Nekrasov partition function", 
      "conformal algebra", 
      "integrable systems", 
      "large N analysis", 
      "N limit", 
      "partition function", 
      "theory results", 
      "explicit integration", 
      "field representation", 
      "integration contour", 
      "two-dimensions", 
      "theory", 
      "model approach", 
      "algebra", 
      "Teschner", 
      "correspondence", 
      "J. Teschner", 
      "model", 
      "limit", 
      "representation", 
      "dimensions", 
      "contours", 
      "special volume", 
      "function", 
      "choice", 
      "expansion", 
      "approach", 
      "system", 
      "connection", 
      "results", 
      "integration", 
      "contribution", 
      "analysis", 
      "block", 
      "N analysis", 
      "potential", 
      "volume"
    ], 
    "name": "-Deformed Matrix Models and 2d/4d Correspondence", 
    "pagination": "121-157", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1045499205"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/978-3-319-18769-3_5"
        ]
      }
    ], 
    "publisher": {
      "name": "Springer Nature", 
      "type": "Organisation"
    }, 
    "sameAs": [
      "https://doi.org/10.1007/978-3-319-18769-3_5", 
      "https://app.dimensions.ai/details/publication/pub.1045499205"
    ], 
    "sdDataset": "chapters", 
    "sdDatePublished": "2022-08-04T17:19", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20220804/entities/gbq_results/chapter/chapter_286.jsonl", 
    "type": "Chapter", 
    "url": "https://doi.org/10.1007/978-3-319-18769-3_5"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/978-3-319-18769-3_5'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/978-3-319-18769-3_5'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/978-3-319-18769-3_5'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/978-3-319-18769-3_5'


 

This table displays all metadata directly associated to this object as RDF triples.

109 TRIPLES      22 PREDICATES      74 URIs      67 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/978-3-319-18769-3_5 schema:about anzsrc-for:01
2 anzsrc-for:0105
3 schema:author N7ca12a27194f46288da3522babf6b802
4 schema:datePublished 2015-11-18
5 schema:datePublishedReg 2015-11-18
6 schema:description We review the \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\beta $$\end{document}-deformed matrix model approach to the correspondence between four-dimensional \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathcal {N}=2$$\end{document} gauge theories and two-dimensional conformal field theories. The \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\beta $$\end{document}-deformed matrix model equipped with the log-type potential is obtained as a free field (Dotsenko-Fateev) representation of the conformal block of chiral conformal algebra in two dimensions, with the precise choice of integration contours. After reviewing various matrix models related to the conformal field theories in two-dimensions, we study the large N limit corresponding to turning off the Omega-background \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\epsilon _{1}, \epsilon _{2} \rightarrow 0$$\end{document}. We show that the large N analysis produces the purely gauge theory results. Furthermore we discuss the Nekrasov-Shatashvili limit (\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\epsilon _{2} \rightarrow 0$$\end{document}) by which we see the connection with the quantum integrable system. We then perform the explicit integration of the matrix model. With the precise choice of the contours we see that this reproduces the expansion of the conformal block and also the Nekrasov partition function. This is a contribution to the special volume on the 2d/4d correspondence, edited by J. Teschner.
7 schema:editor Nb008d1cd8af1404dabbe32a4b30d6e0a
8 schema:genre chapter
9 schema:isAccessibleForFree true
10 schema:isPartOf N669497af67d643fc82d8279bd33a8a0a
11 schema:keywords J. Teschner
12 N analysis
13 N limit
14 Nekrasov partition function
15 Nekrasov-Shatashvili limit
16 Teschner
17 algebra
18 analysis
19 approach
20 block
21 choice
22 conformal algebra
23 conformal blocks
24 conformal field theory
25 connection
26 contours
27 contribution
28 correspondence
29 deformed matrix model
30 dimensions
31 expansion
32 explicit integration
33 field representation
34 field theory
35 free field representation
36 function
37 gauge theory results
38 integrable systems
39 integration
40 integration contour
41 large N analysis
42 large N limit
43 limit
44 matrix model
45 matrix model approach
46 model
47 model approach
48 partition function
49 potential
50 precise choice
51 quantum integrable systems
52 representation
53 results
54 special volume
55 system
56 theory
57 theory results
58 two-dimensional conformal field theory
59 two-dimensions
60 volume
61 schema:name -Deformed Matrix Models and 2d/4d Correspondence
62 schema:pagination 121-157
63 schema:productId N5c4cb0e356924fc5a0bf1480691deb9d
64 Nbbb3befb32454ca981361d4a7a60ca24
65 schema:publisher N753c2e7958524ca2979bd95299768284
66 schema:sameAs https://app.dimensions.ai/details/publication/pub.1045499205
67 https://doi.org/10.1007/978-3-319-18769-3_5
68 schema:sdDatePublished 2022-08-04T17:19
69 schema:sdLicense https://scigraph.springernature.com/explorer/license/
70 schema:sdPublisher N82a2af1039a34ccea761fb86985caa61
71 schema:url https://doi.org/10.1007/978-3-319-18769-3_5
72 sgo:license sg:explorer/license/
73 sgo:sdDataset chapters
74 rdf:type schema:Chapter
75 N2ca644222bd4497091ba8373ad5bf74c schema:familyName Teschner
76 schema:givenName Jörg
77 rdf:type schema:Person
78 N5c4cb0e356924fc5a0bf1480691deb9d schema:name dimensions_id
79 schema:value pub.1045499205
80 rdf:type schema:PropertyValue
81 N669497af67d643fc82d8279bd33a8a0a schema:isbn 978-3-319-18768-6
82 978-3-319-18769-3
83 schema:name New Dualities of Supersymmetric Gauge Theories
84 rdf:type schema:Book
85 N753c2e7958524ca2979bd95299768284 schema:name Springer Nature
86 rdf:type schema:Organisation
87 N7ca12a27194f46288da3522babf6b802 rdf:first sg:person.014757666656.30
88 rdf:rest rdf:nil
89 N82a2af1039a34ccea761fb86985caa61 schema:name Springer Nature - SN SciGraph project
90 rdf:type schema:Organization
91 Nb008d1cd8af1404dabbe32a4b30d6e0a rdf:first N2ca644222bd4497091ba8373ad5bf74c
92 rdf:rest rdf:nil
93 Nbbb3befb32454ca981361d4a7a60ca24 schema:name doi
94 schema:value 10.1007/978-3-319-18769-3_5
95 rdf:type schema:PropertyValue
96 anzsrc-for:01 schema:inDefinedTermSet anzsrc-for:
97 schema:name Mathematical Sciences
98 rdf:type schema:DefinedTerm
99 anzsrc-for:0105 schema:inDefinedTermSet anzsrc-for:
100 schema:name Mathematical Physics
101 rdf:type schema:DefinedTerm
102 sg:person.014757666656.30 schema:affiliation grid-institutes:None
103 schema:familyName Maruyoshi
104 schema:givenName Kazunobu
105 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014757666656.30
106 rdf:type schema:Person
107 grid-institutes:None schema:alternateName The Blackett Laboratory, Imperial Collage London, Prince Concert Rd, SW7 2AZ, London, UK
108 schema:name The Blackett Laboratory, Imperial Collage London, Prince Concert Rd, SW7 2AZ, London, UK
109 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...