Ontology type: schema:Chapter Open Access: True
2015-11-18
AUTHORS ABSTRACTWe review the \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\beta $$\end{document}-deformed matrix model approach to the correspondence between four-dimensional \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathcal {N}=2$$\end{document} gauge theories and two-dimensional conformal field theories. The \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\beta $$\end{document}-deformed matrix model equipped with the log-type potential is obtained as a free field (Dotsenko-Fateev) representation of the conformal block of chiral conformal algebra in two dimensions, with the precise choice of integration contours. After reviewing various matrix models related to the conformal field theories in two-dimensions, we study the large N limit corresponding to turning off the Omega-background \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\epsilon _{1}, \epsilon _{2} \rightarrow 0$$\end{document}. We show that the large N analysis produces the purely gauge theory results. Furthermore we discuss the Nekrasov-Shatashvili limit (\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\epsilon _{2} \rightarrow 0$$\end{document}) by which we see the connection with the quantum integrable system. We then perform the explicit integration of the matrix model. With the precise choice of the contours we see that this reproduces the expansion of the conformal block and also the Nekrasov partition function. This is a contribution to the special volume on the 2d/4d correspondence, edited by J. Teschner. More... »
PAGES121-157
New Dualities of Supersymmetric Gauge Theories
ISBN
978-3-319-18768-6
978-3-319-18769-3
http://scigraph.springernature.com/pub.10.1007/978-3-319-18769-3_5
DOIhttp://dx.doi.org/10.1007/978-3-319-18769-3_5
DIMENSIONShttps://app.dimensions.ai/details/publication/pub.1045499205
JSON-LD is the canonical representation for SciGraph data.
TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT
[
{
"@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json",
"about": [
{
"id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/01",
"inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/",
"name": "Mathematical Sciences",
"type": "DefinedTerm"
},
{
"id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0105",
"inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/",
"name": "Mathematical Physics",
"type": "DefinedTerm"
}
],
"author": [
{
"affiliation": {
"alternateName": "The Blackett Laboratory, Imperial Collage London, Prince Concert Rd, SW7 2AZ, London, UK",
"id": "http://www.grid.ac/institutes/None",
"name": [
"The Blackett Laboratory, Imperial Collage London, Prince Concert Rd, SW7 2AZ, London, UK"
],
"type": "Organization"
},
"familyName": "Maruyoshi",
"givenName": "Kazunobu",
"id": "sg:person.014757666656.30",
"sameAs": [
"https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014757666656.30"
],
"type": "Person"
}
],
"datePublished": "2015-11-18",
"datePublishedReg": "2015-11-18",
"description": "We review the \\documentclass[12pt]{minimal}\n\t\t\t\t\\usepackage{amsmath}\n\t\t\t\t\\usepackage{wasysym}\n\t\t\t\t\\usepackage{amsfonts}\n\t\t\t\t\\usepackage{amssymb}\n\t\t\t\t\\usepackage{amsbsy}\n\t\t\t\t\\usepackage{mathrsfs}\n\t\t\t\t\\usepackage{upgreek}\n\t\t\t\t\\setlength{\\oddsidemargin}{-69pt}\n\t\t\t\t\\begin{document}$$\\beta $$\\end{document}-deformed matrix model approach to the correspondence between four-dimensional \\documentclass[12pt]{minimal}\n\t\t\t\t\\usepackage{amsmath}\n\t\t\t\t\\usepackage{wasysym}\n\t\t\t\t\\usepackage{amsfonts}\n\t\t\t\t\\usepackage{amssymb}\n\t\t\t\t\\usepackage{amsbsy}\n\t\t\t\t\\usepackage{mathrsfs}\n\t\t\t\t\\usepackage{upgreek}\n\t\t\t\t\\setlength{\\oddsidemargin}{-69pt}\n\t\t\t\t\\begin{document}$$\\mathcal {N}=2$$\\end{document} gauge theories and two-dimensional conformal field theories. The \\documentclass[12pt]{minimal}\n\t\t\t\t\\usepackage{amsmath}\n\t\t\t\t\\usepackage{wasysym}\n\t\t\t\t\\usepackage{amsfonts}\n\t\t\t\t\\usepackage{amssymb}\n\t\t\t\t\\usepackage{amsbsy}\n\t\t\t\t\\usepackage{mathrsfs}\n\t\t\t\t\\usepackage{upgreek}\n\t\t\t\t\\setlength{\\oddsidemargin}{-69pt}\n\t\t\t\t\\begin{document}$$\\beta $$\\end{document}-deformed matrix model equipped with the log-type potential is obtained as a free field (Dotsenko-Fateev) representation of the conformal block of chiral conformal algebra in two dimensions, with the precise choice of integration contours. After reviewing various matrix models related to the conformal field theories in two-dimensions, we study the large N limit corresponding to turning off the Omega-background \\documentclass[12pt]{minimal}\n\t\t\t\t\\usepackage{amsmath}\n\t\t\t\t\\usepackage{wasysym}\n\t\t\t\t\\usepackage{amsfonts}\n\t\t\t\t\\usepackage{amssymb}\n\t\t\t\t\\usepackage{amsbsy}\n\t\t\t\t\\usepackage{mathrsfs}\n\t\t\t\t\\usepackage{upgreek}\n\t\t\t\t\\setlength{\\oddsidemargin}{-69pt}\n\t\t\t\t\\begin{document}$$\\epsilon _{1}, \\epsilon _{2} \\rightarrow 0$$\\end{document}. We show that the large N analysis produces the purely gauge theory results. Furthermore we discuss the Nekrasov-Shatashvili limit (\\documentclass[12pt]{minimal}\n\t\t\t\t\\usepackage{amsmath}\n\t\t\t\t\\usepackage{wasysym}\n\t\t\t\t\\usepackage{amsfonts}\n\t\t\t\t\\usepackage{amssymb}\n\t\t\t\t\\usepackage{amsbsy}\n\t\t\t\t\\usepackage{mathrsfs}\n\t\t\t\t\\usepackage{upgreek}\n\t\t\t\t\\setlength{\\oddsidemargin}{-69pt}\n\t\t\t\t\\begin{document}$$\\epsilon _{2} \\rightarrow 0$$\\end{document}) by which we see the connection with the quantum integrable system. We then perform the explicit integration of the matrix model. With the precise choice of the contours we see that this reproduces the expansion of the conformal block and also the Nekrasov partition function. This is a contribution to the special volume on the 2d/4d correspondence, edited by J. Teschner.",
"editor": [
{
"familyName": "Teschner",
"givenName": "J\u00f6rg",
"type": "Person"
}
],
"genre": "chapter",
"id": "sg:pub.10.1007/978-3-319-18769-3_5",
"isAccessibleForFree": true,
"isPartOf": {
"isbn": [
"978-3-319-18768-6",
"978-3-319-18769-3"
],
"name": "New Dualities of Supersymmetric Gauge Theories",
"type": "Book"
},
"keywords": [
"conformal field theory",
"matrix model",
"field theory",
"conformal blocks",
"two-dimensional conformal field theory",
"quantum integrable systems",
"matrix model approach",
"free field representation",
"gauge theory results",
"large N limit",
"deformed matrix model",
"Nekrasov-Shatashvili limit",
"precise choice",
"Nekrasov partition function",
"conformal algebra",
"integrable systems",
"large N analysis",
"N limit",
"partition function",
"theory results",
"explicit integration",
"field representation",
"integration contour",
"two-dimensions",
"theory",
"model approach",
"algebra",
"Teschner",
"correspondence",
"J. Teschner",
"model",
"limit",
"representation",
"dimensions",
"contours",
"special volume",
"function",
"choice",
"expansion",
"approach",
"system",
"connection",
"results",
"integration",
"contribution",
"analysis",
"block",
"N analysis",
"potential",
"volume"
],
"name": "-Deformed Matrix Models and 2d/4d Correspondence",
"pagination": "121-157",
"productId": [
{
"name": "dimensions_id",
"type": "PropertyValue",
"value": [
"pub.1045499205"
]
},
{
"name": "doi",
"type": "PropertyValue",
"value": [
"10.1007/978-3-319-18769-3_5"
]
}
],
"publisher": {
"name": "Springer Nature",
"type": "Organisation"
},
"sameAs": [
"https://doi.org/10.1007/978-3-319-18769-3_5",
"https://app.dimensions.ai/details/publication/pub.1045499205"
],
"sdDataset": "chapters",
"sdDatePublished": "2022-08-04T17:19",
"sdLicense": "https://scigraph.springernature.com/explorer/license/",
"sdPublisher": {
"name": "Springer Nature - SN SciGraph project",
"type": "Organization"
},
"sdSource": "s3://com-springernature-scigraph/baseset/20220804/entities/gbq_results/chapter/chapter_286.jsonl",
"type": "Chapter",
"url": "https://doi.org/10.1007/978-3-319-18769-3_5"
}
]
Download the RDF metadata as: json-ld nt turtle xml License info
JSON-LD is a popular format for linked data which is fully compatible with JSON.
curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/978-3-319-18769-3_5'
N-Triples is a line-based linked data format ideal for batch operations.
curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/978-3-319-18769-3_5'
Turtle is a human-readable linked data format.
curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/978-3-319-18769-3_5'
RDF/XML is a standard XML format for linked data.
curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/978-3-319-18769-3_5'
This table displays all metadata directly associated to this object as RDF triples.
109 TRIPLES
22 PREDICATES
74 URIs
67 LITERALS
7 BLANK NODES
Subject | Predicate | Object | |
---|---|---|---|
1 | sg:pub.10.1007/978-3-319-18769-3_5 | schema:about | anzsrc-for:01 |
2 | ″ | ″ | anzsrc-for:0105 |
3 | ″ | schema:author | N7ca12a27194f46288da3522babf6b802 |
4 | ″ | schema:datePublished | 2015-11-18 |
5 | ″ | schema:datePublishedReg | 2015-11-18 |
6 | ″ | schema:description | We review the \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\beta $$\end{document}-deformed matrix model approach to the correspondence between four-dimensional \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathcal {N}=2$$\end{document} gauge theories and two-dimensional conformal field theories. The \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\beta $$\end{document}-deformed matrix model equipped with the log-type potential is obtained as a free field (Dotsenko-Fateev) representation of the conformal block of chiral conformal algebra in two dimensions, with the precise choice of integration contours. After reviewing various matrix models related to the conformal field theories in two-dimensions, we study the large N limit corresponding to turning off the Omega-background \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\epsilon _{1}, \epsilon _{2} \rightarrow 0$$\end{document}. We show that the large N analysis produces the purely gauge theory results. Furthermore we discuss the Nekrasov-Shatashvili limit (\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\epsilon _{2} \rightarrow 0$$\end{document}) by which we see the connection with the quantum integrable system. We then perform the explicit integration of the matrix model. With the precise choice of the contours we see that this reproduces the expansion of the conformal block and also the Nekrasov partition function. This is a contribution to the special volume on the 2d/4d correspondence, edited by J. Teschner. |
7 | ″ | schema:editor | Nb008d1cd8af1404dabbe32a4b30d6e0a |
8 | ″ | schema:genre | chapter |
9 | ″ | schema:isAccessibleForFree | true |
10 | ″ | schema:isPartOf | N669497af67d643fc82d8279bd33a8a0a |
11 | ″ | schema:keywords | J. Teschner |
12 | ″ | ″ | N analysis |
13 | ″ | ″ | N limit |
14 | ″ | ″ | Nekrasov partition function |
15 | ″ | ″ | Nekrasov-Shatashvili limit |
16 | ″ | ″ | Teschner |
17 | ″ | ″ | algebra |
18 | ″ | ″ | analysis |
19 | ″ | ″ | approach |
20 | ″ | ″ | block |
21 | ″ | ″ | choice |
22 | ″ | ″ | conformal algebra |
23 | ″ | ″ | conformal blocks |
24 | ″ | ″ | conformal field theory |
25 | ″ | ″ | connection |
26 | ″ | ″ | contours |
27 | ″ | ″ | contribution |
28 | ″ | ″ | correspondence |
29 | ″ | ″ | deformed matrix model |
30 | ″ | ″ | dimensions |
31 | ″ | ″ | expansion |
32 | ″ | ″ | explicit integration |
33 | ″ | ″ | field representation |
34 | ″ | ″ | field theory |
35 | ″ | ″ | free field representation |
36 | ″ | ″ | function |
37 | ″ | ″ | gauge theory results |
38 | ″ | ″ | integrable systems |
39 | ″ | ″ | integration |
40 | ″ | ″ | integration contour |
41 | ″ | ″ | large N analysis |
42 | ″ | ″ | large N limit |
43 | ″ | ″ | limit |
44 | ″ | ″ | matrix model |
45 | ″ | ″ | matrix model approach |
46 | ″ | ″ | model |
47 | ″ | ″ | model approach |
48 | ″ | ″ | partition function |
49 | ″ | ″ | potential |
50 | ″ | ″ | precise choice |
51 | ″ | ″ | quantum integrable systems |
52 | ″ | ″ | representation |
53 | ″ | ″ | results |
54 | ″ | ″ | special volume |
55 | ″ | ″ | system |
56 | ″ | ″ | theory |
57 | ″ | ″ | theory results |
58 | ″ | ″ | two-dimensional conformal field theory |
59 | ″ | ″ | two-dimensions |
60 | ″ | ″ | volume |
61 | ″ | schema:name | -Deformed Matrix Models and 2d/4d Correspondence |
62 | ″ | schema:pagination | 121-157 |
63 | ″ | schema:productId | N5c4cb0e356924fc5a0bf1480691deb9d |
64 | ″ | ″ | Nbbb3befb32454ca981361d4a7a60ca24 |
65 | ″ | schema:publisher | N753c2e7958524ca2979bd95299768284 |
66 | ″ | schema:sameAs | https://app.dimensions.ai/details/publication/pub.1045499205 |
67 | ″ | ″ | https://doi.org/10.1007/978-3-319-18769-3_5 |
68 | ″ | schema:sdDatePublished | 2022-08-04T17:19 |
69 | ″ | schema:sdLicense | https://scigraph.springernature.com/explorer/license/ |
70 | ″ | schema:sdPublisher | N82a2af1039a34ccea761fb86985caa61 |
71 | ″ | schema:url | https://doi.org/10.1007/978-3-319-18769-3_5 |
72 | ″ | sgo:license | sg:explorer/license/ |
73 | ″ | sgo:sdDataset | chapters |
74 | ″ | rdf:type | schema:Chapter |
75 | N2ca644222bd4497091ba8373ad5bf74c | schema:familyName | Teschner |
76 | ″ | schema:givenName | Jörg |
77 | ″ | rdf:type | schema:Person |
78 | N5c4cb0e356924fc5a0bf1480691deb9d | schema:name | dimensions_id |
79 | ″ | schema:value | pub.1045499205 |
80 | ″ | rdf:type | schema:PropertyValue |
81 | N669497af67d643fc82d8279bd33a8a0a | schema:isbn | 978-3-319-18768-6 |
82 | ″ | ″ | 978-3-319-18769-3 |
83 | ″ | schema:name | New Dualities of Supersymmetric Gauge Theories |
84 | ″ | rdf:type | schema:Book |
85 | N753c2e7958524ca2979bd95299768284 | schema:name | Springer Nature |
86 | ″ | rdf:type | schema:Organisation |
87 | N7ca12a27194f46288da3522babf6b802 | rdf:first | sg:person.014757666656.30 |
88 | ″ | rdf:rest | rdf:nil |
89 | N82a2af1039a34ccea761fb86985caa61 | schema:name | Springer Nature - SN SciGraph project |
90 | ″ | rdf:type | schema:Organization |
91 | Nb008d1cd8af1404dabbe32a4b30d6e0a | rdf:first | N2ca644222bd4497091ba8373ad5bf74c |
92 | ″ | rdf:rest | rdf:nil |
93 | Nbbb3befb32454ca981361d4a7a60ca24 | schema:name | doi |
94 | ″ | schema:value | 10.1007/978-3-319-18769-3_5 |
95 | ″ | rdf:type | schema:PropertyValue |
96 | anzsrc-for:01 | schema:inDefinedTermSet | anzsrc-for: |
97 | ″ | schema:name | Mathematical Sciences |
98 | ″ | rdf:type | schema:DefinedTerm |
99 | anzsrc-for:0105 | schema:inDefinedTermSet | anzsrc-for: |
100 | ″ | schema:name | Mathematical Physics |
101 | ″ | rdf:type | schema:DefinedTerm |
102 | sg:person.014757666656.30 | schema:affiliation | grid-institutes:None |
103 | ″ | schema:familyName | Maruyoshi |
104 | ″ | schema:givenName | Kazunobu |
105 | ″ | schema:sameAs | https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014757666656.30 |
106 | ″ | rdf:type | schema:Person |
107 | grid-institutes:None | schema:alternateName | The Blackett Laboratory, Imperial Collage London, Prince Concert Rd, SW7 2AZ, London, UK |
108 | ″ | schema:name | The Blackett Laboratory, Imperial Collage London, Prince Concert Rd, SW7 2AZ, London, UK |
109 | ″ | rdf:type | schema:Organization |