Bilevel Optimization with Nonsmooth Lower Level Problems View Full Text


Ontology type: schema:Chapter      Open Access: True


Chapter Info

DATE

2015-04-28

AUTHORS

Peter Ochs , René Ranftl , Thomas Brox , Thomas Pock

ABSTRACT

We consider a bilevel optimization approach for parameter learning in nonsmooth variational models. Existing approaches solve this problem by applying implicit differentiation to a sufficiently smooth approximation of the nondifferentiable lower level problem. We propose an alternative method based on differentiating the iterations of a nonlinear primal–dual algorithm. Our method computes exact (sub)gradients and can be applied also in the nonsmooth setting. We show preliminary results for the case of multi-label image segmentation. More... »

PAGES

654-665

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/978-3-319-18461-6_52

DOI

http://dx.doi.org/10.1007/978-3-319-18461-6_52

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1041058839


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/01", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Mathematical Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0103", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Numerical and Computational Mathematics", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Computer Vision Group, University of Freiburg, Freiburg, Germany", 
          "id": "http://www.grid.ac/institutes/grid.5963.9", 
          "name": [
            "Computer Vision Group, University of Freiburg, Freiburg, Germany"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Ochs", 
        "givenName": "Peter", 
        "id": "sg:person.011151475055.48", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011151475055.48"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Institute for Computer Graphics and Vision, Graz University of Technology, Graz, Austria", 
          "id": "http://www.grid.ac/institutes/grid.410413.3", 
          "name": [
            "Institute for Computer Graphics and Vision, Graz University of Technology, Graz, Austria"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Ranftl", 
        "givenName": "Ren\u00e9", 
        "id": "sg:person.013557163412.33", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013557163412.33"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Computer Vision Group, University of Freiburg, Freiburg, Germany", 
          "id": "http://www.grid.ac/institutes/grid.5963.9", 
          "name": [
            "Computer Vision Group, University of Freiburg, Freiburg, Germany"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Brox", 
        "givenName": "Thomas", 
        "id": "sg:person.012443225372.65", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012443225372.65"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Digital Safety and Security Department, AIT Austrian Institute of Technology GmbH, 1220, Vienna, Austria", 
          "id": "http://www.grid.ac/institutes/grid.4332.6", 
          "name": [
            "Institute for Computer Graphics and Vision, Graz University of Technology, Graz, Austria", 
            "Digital Safety and Security Department, AIT Austrian Institute of Technology GmbH, 1220, Vienna, Austria"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Pock", 
        "givenName": "Thomas", 
        "id": "sg:person.015744126036.09", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015744126036.09"
        ], 
        "type": "Person"
      }
    ], 
    "datePublished": "2015-04-28", 
    "datePublishedReg": "2015-04-28", 
    "description": "We consider a bilevel optimization approach for parameter learning in nonsmooth variational models. Existing approaches solve this problem by applying implicit differentiation to a sufficiently smooth approximation of the nondifferentiable lower level problem. We propose an alternative method based on differentiating the iterations of a nonlinear primal\u2013dual algorithm. Our method computes exact (sub)gradients and can be applied also in the nonsmooth setting. We show preliminary results for the case of multi-label image segmentation.", 
    "editor": [
      {
        "familyName": "Aujol", 
        "givenName": "Jean-Fran\u00e7ois", 
        "type": "Person"
      }, 
      {
        "familyName": "Nikolova", 
        "givenName": "Mila", 
        "type": "Person"
      }, 
      {
        "familyName": "Papadakis", 
        "givenName": "Nicolas", 
        "type": "Person"
      }
    ], 
    "genre": "chapter", 
    "id": "sg:pub.10.1007/978-3-319-18461-6_52", 
    "isAccessibleForFree": true, 
    "isPartOf": {
      "isbn": [
        "978-3-319-18460-9", 
        "978-3-319-18461-6"
      ], 
      "name": "Scale Space and Variational Methods in Computer Vision", 
      "type": "Book"
    }, 
    "keywords": [
      "level problem", 
      "bilevel optimization approach", 
      "lower level problem", 
      "primal-dual algorithm", 
      "multi-label image segmentation", 
      "smooth approximation", 
      "nonsmooth setting", 
      "bilevel optimization", 
      "implicit differentiation", 
      "optimization approach", 
      "variational model", 
      "problem", 
      "approximation", 
      "iteration", 
      "image segmentation", 
      "Existing approaches", 
      "optimization", 
      "alternative method", 
      "algorithm", 
      "approach", 
      "parameters", 
      "model", 
      "preliminary results", 
      "cases", 
      "segmentation", 
      "results", 
      "setting", 
      "differentiation", 
      "method"
    ], 
    "name": "Bilevel Optimization with Nonsmooth Lower Level Problems", 
    "pagination": "654-665", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1041058839"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/978-3-319-18461-6_52"
        ]
      }
    ], 
    "publisher": {
      "name": "Springer Nature", 
      "type": "Organisation"
    }, 
    "sameAs": [
      "https://doi.org/10.1007/978-3-319-18461-6_52", 
      "https://app.dimensions.ai/details/publication/pub.1041058839"
    ], 
    "sdDataset": "chapters", 
    "sdDatePublished": "2022-11-24T21:12", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20221124/entities/gbq_results/chapter/chapter_160.jsonl", 
    "type": "Chapter", 
    "url": "https://doi.org/10.1007/978-3-319-18461-6_52"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/978-3-319-18461-6_52'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/978-3-319-18461-6_52'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/978-3-319-18461-6_52'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/978-3-319-18461-6_52'


 

This table displays all metadata directly associated to this object as RDF triples.

126 TRIPLES      22 PREDICATES      53 URIs      46 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/978-3-319-18461-6_52 schema:about anzsrc-for:01
2 anzsrc-for:0103
3 schema:author Nb2f433eed3054d939a6b2a64813f7619
4 schema:datePublished 2015-04-28
5 schema:datePublishedReg 2015-04-28
6 schema:description We consider a bilevel optimization approach for parameter learning in nonsmooth variational models. Existing approaches solve this problem by applying implicit differentiation to a sufficiently smooth approximation of the nondifferentiable lower level problem. We propose an alternative method based on differentiating the iterations of a nonlinear primal–dual algorithm. Our method computes exact (sub)gradients and can be applied also in the nonsmooth setting. We show preliminary results for the case of multi-label image segmentation.
7 schema:editor N917491c374be4da6a191bfe2ab2fdf9c
8 schema:genre chapter
9 schema:isAccessibleForFree true
10 schema:isPartOf N89e2ab04c4df40dbacf448015c411c7f
11 schema:keywords Existing approaches
12 algorithm
13 alternative method
14 approach
15 approximation
16 bilevel optimization
17 bilevel optimization approach
18 cases
19 differentiation
20 image segmentation
21 implicit differentiation
22 iteration
23 level problem
24 lower level problem
25 method
26 model
27 multi-label image segmentation
28 nonsmooth setting
29 optimization
30 optimization approach
31 parameters
32 preliminary results
33 primal-dual algorithm
34 problem
35 results
36 segmentation
37 setting
38 smooth approximation
39 variational model
40 schema:name Bilevel Optimization with Nonsmooth Lower Level Problems
41 schema:pagination 654-665
42 schema:productId N56eb3fb94c704b2ea613d57fbe53f2e3
43 Nf54a2510c14e4b7983ea9d96a360986d
44 schema:publisher N29ffc15f19714341b12796c6fb57366b
45 schema:sameAs https://app.dimensions.ai/details/publication/pub.1041058839
46 https://doi.org/10.1007/978-3-319-18461-6_52
47 schema:sdDatePublished 2022-11-24T21:12
48 schema:sdLicense https://scigraph.springernature.com/explorer/license/
49 schema:sdPublisher Ne6f910fc44cc451687601937271dff8b
50 schema:url https://doi.org/10.1007/978-3-319-18461-6_52
51 sgo:license sg:explorer/license/
52 sgo:sdDataset chapters
53 rdf:type schema:Chapter
54 N106910ec302b4a408f8d39a7cff10528 rdf:first sg:person.012443225372.65
55 rdf:rest Nae0d98ac1f834e2899dece317bcb8bef
56 N29ffc15f19714341b12796c6fb57366b schema:name Springer Nature
57 rdf:type schema:Organisation
58 N49bf643b49564f11b4fe713944a31046 rdf:first sg:person.013557163412.33
59 rdf:rest N106910ec302b4a408f8d39a7cff10528
60 N56eb3fb94c704b2ea613d57fbe53f2e3 schema:name dimensions_id
61 schema:value pub.1041058839
62 rdf:type schema:PropertyValue
63 N7a38561bf678403fa26d1565831148ce schema:familyName Nikolova
64 schema:givenName Mila
65 rdf:type schema:Person
66 N89e2ab04c4df40dbacf448015c411c7f schema:isbn 978-3-319-18460-9
67 978-3-319-18461-6
68 schema:name Scale Space and Variational Methods in Computer Vision
69 rdf:type schema:Book
70 N917491c374be4da6a191bfe2ab2fdf9c rdf:first Naa46607769f7409eb9081af98f09b045
71 rdf:rest Nc0397ff6bc5d4527bbc7b3718e50ce35
72 N9b49d53d87e841a8bc06b27267e528c8 schema:familyName Papadakis
73 schema:givenName Nicolas
74 rdf:type schema:Person
75 Naa46607769f7409eb9081af98f09b045 schema:familyName Aujol
76 schema:givenName Jean-François
77 rdf:type schema:Person
78 Nae0d98ac1f834e2899dece317bcb8bef rdf:first sg:person.015744126036.09
79 rdf:rest rdf:nil
80 Nb2f433eed3054d939a6b2a64813f7619 rdf:first sg:person.011151475055.48
81 rdf:rest N49bf643b49564f11b4fe713944a31046
82 Nc0397ff6bc5d4527bbc7b3718e50ce35 rdf:first N7a38561bf678403fa26d1565831148ce
83 rdf:rest Nc76769023ab3477e9431bf73f8aff529
84 Nc76769023ab3477e9431bf73f8aff529 rdf:first N9b49d53d87e841a8bc06b27267e528c8
85 rdf:rest rdf:nil
86 Ne6f910fc44cc451687601937271dff8b schema:name Springer Nature - SN SciGraph project
87 rdf:type schema:Organization
88 Nf54a2510c14e4b7983ea9d96a360986d schema:name doi
89 schema:value 10.1007/978-3-319-18461-6_52
90 rdf:type schema:PropertyValue
91 anzsrc-for:01 schema:inDefinedTermSet anzsrc-for:
92 schema:name Mathematical Sciences
93 rdf:type schema:DefinedTerm
94 anzsrc-for:0103 schema:inDefinedTermSet anzsrc-for:
95 schema:name Numerical and Computational Mathematics
96 rdf:type schema:DefinedTerm
97 sg:person.011151475055.48 schema:affiliation grid-institutes:grid.5963.9
98 schema:familyName Ochs
99 schema:givenName Peter
100 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011151475055.48
101 rdf:type schema:Person
102 sg:person.012443225372.65 schema:affiliation grid-institutes:grid.5963.9
103 schema:familyName Brox
104 schema:givenName Thomas
105 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012443225372.65
106 rdf:type schema:Person
107 sg:person.013557163412.33 schema:affiliation grid-institutes:grid.410413.3
108 schema:familyName Ranftl
109 schema:givenName René
110 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013557163412.33
111 rdf:type schema:Person
112 sg:person.015744126036.09 schema:affiliation grid-institutes:grid.4332.6
113 schema:familyName Pock
114 schema:givenName Thomas
115 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015744126036.09
116 rdf:type schema:Person
117 grid-institutes:grid.410413.3 schema:alternateName Institute for Computer Graphics and Vision, Graz University of Technology, Graz, Austria
118 schema:name Institute for Computer Graphics and Vision, Graz University of Technology, Graz, Austria
119 rdf:type schema:Organization
120 grid-institutes:grid.4332.6 schema:alternateName Digital Safety and Security Department, AIT Austrian Institute of Technology GmbH, 1220, Vienna, Austria
121 schema:name Digital Safety and Security Department, AIT Austrian Institute of Technology GmbH, 1220, Vienna, Austria
122 Institute for Computer Graphics and Vision, Graz University of Technology, Graz, Austria
123 rdf:type schema:Organization
124 grid-institutes:grid.5963.9 schema:alternateName Computer Vision Group, University of Freiburg, Freiburg, Germany
125 schema:name Computer Vision Group, University of Freiburg, Freiburg, Germany
126 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...