Simulation–Based Algorithms for the Optimization of Sensor Deployment View Full Text


Ontology type: schema:Chapter     


Chapter Info

DATE

2015

AUTHORS

Yannick Kenné , François Le Gland , Christian Musso , Sébastien Paris , Yannick Glemarec , Émile Vasta

ABSTRACT

Two simulation–based algorithms are presented, that have been successfully applied to an industrial optimization problem. These two algorithms have different and complementary features. One is fast, and sequential: it proceeds by running a population of targets and by dropping and activating a new sensor (or re–activating a sensor already available) where and when this action seems appropriate. The other is slow, iterative, and non–sequential: it proceeds by updating a population of deployment plans with guaranteed and increasing criterion value at each iteration, and for each given deployment plan, there is a population of targets running to evaluate the criterion. Finally, the two algorithms can cooperate in many different ways, to try and get the best of both approaches. A simple and efficient way is to use the deployment plans provided by the sequential algorithm as the initial population for the iterative algorithm. More... »

PAGES

261-272

References to SciGraph publications

  • 2012. Splitting Method for Spatio-temporal Sensors Deployment in Underwater Systems in EVOLUTIONARY COMPUTATION IN COMBINATORIAL OPTIMIZATION
  • 2008-12. An Efficient Algorithm for Rare-event Probability Estimation, Combinatorial Optimization, and Counting in METHODOLOGY AND COMPUTING IN APPLIED PROBABILITY
  • Book

    TITLE

    Modelling, Computation and Optimization in Information Systems and Management Sciences

    ISBN

    978-3-319-18166-0
    978-3-319-18167-7

    Identifiers

    URI

    http://scigraph.springernature.com/pub.10.1007/978-3-319-18167-7_23

    DOI

    http://dx.doi.org/10.1007/978-3-319-18167-7_23

    DIMENSIONS

    https://app.dimensions.ai/details/publication/pub.1047894815


    Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
    Incoming Citations Browse incoming citations for this publication using opencitations.net

    JSON-LD is the canonical representation for SciGraph data.

    TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

    [
      {
        "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
        "about": [
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0102", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Applied Mathematics", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/01", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Mathematical Sciences", 
            "type": "DefinedTerm"
          }
        ], 
        "author": [
          {
            "affiliation": {
              "alternateName": "Universite De Toulon Et Du Var", 
              "id": "https://www.grid.ac/institutes/grid.12611.35", 
              "name": [
                "Universit\u00e9 de Toulon/LSIS, Toulon, France"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Kenn\u00e9", 
            "givenName": "Yannick", 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "French Institute for Research in Computer Science and Automation", 
              "id": "https://www.grid.ac/institutes/grid.5328.c", 
              "name": [
                "INRIA, Rennes, France"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Le Gland", 
            "givenName": "Fran\u00e7ois", 
            "id": "sg:person.07757427211.15", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07757427211.15"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Office National d'\u00c9tudes et de Recherches A\u00e9rospatiales", 
              "id": "https://www.grid.ac/institutes/grid.4365.4", 
              "name": [
                "ONERA, Palaiseau, France"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Musso", 
            "givenName": "Christian", 
            "id": "sg:person.011377561312.36", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011377561312.36"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Universite De Toulon Et Du Var", 
              "id": "https://www.grid.ac/institutes/grid.12611.35", 
              "name": [
                "Universit\u00e9 de Toulon/LSIS, Toulon, France"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Paris", 
            "givenName": "S\u00e9bastien", 
            "id": "sg:person.014371661147.40", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014371661147.40"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "name": [
                "DGA Techniques navales, Toulon, France"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Glemarec", 
            "givenName": "Yannick", 
            "id": "sg:person.013011135417.54", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013011135417.54"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "name": [
                "DGA Techniques navales, Toulon, France"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Vasta", 
            "givenName": "\u00c9mile", 
            "type": "Person"
          }
        ], 
        "citation": [
          {
            "id": "sg:pub.10.1007/s11009-008-9073-7", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1002752311", 
              "https://doi.org/10.1007/s11009-008-9073-7"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/978-3-642-29124-1_21", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1008145367", 
              "https://doi.org/10.1007/978-3-642-29124-1_21"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1109/34.1000236", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1061155588"
            ], 
            "type": "CreativeWork"
          }
        ], 
        "datePublished": "2015", 
        "datePublishedReg": "2015-01-01", 
        "description": "Two simulation\u2013based algorithms are presented, that have been successfully applied to an industrial optimization problem. These two algorithms have different and complementary features. One is fast, and sequential: it proceeds by running a population of targets and by dropping and activating a new sensor (or re\u2013activating a sensor already available) where and when this action seems appropriate. The other is slow, iterative, and non\u2013sequential: it proceeds by updating a population of deployment plans with guaranteed and increasing criterion value at each iteration, and for each given deployment plan, there is a population of targets running to evaluate the criterion. Finally, the two algorithms can cooperate in many different ways, to try and get the best of both approaches. A simple and efficient way is to use the deployment plans provided by the sequential algorithm as the initial population for the iterative algorithm.", 
        "editor": [
          {
            "familyName": "Le Thi", 
            "givenName": "Hoai An", 
            "type": "Person"
          }, 
          {
            "familyName": "Pham Dinh", 
            "givenName": "Tao", 
            "type": "Person"
          }, 
          {
            "familyName": "Nguyen", 
            "givenName": "Ngoc Thanh", 
            "type": "Person"
          }
        ], 
        "genre": "chapter", 
        "id": "sg:pub.10.1007/978-3-319-18167-7_23", 
        "inLanguage": [
          "en"
        ], 
        "isAccessibleForFree": false, 
        "isPartOf": {
          "isbn": [
            "978-3-319-18166-0", 
            "978-3-319-18167-7"
          ], 
          "name": "Modelling, Computation and Optimization in Information Systems and Management Sciences", 
          "type": "Book"
        }, 
        "name": "Simulation\u2013Based Algorithms for the Optimization of Sensor Deployment", 
        "pagination": "261-272", 
        "productId": [
          {
            "name": "doi", 
            "type": "PropertyValue", 
            "value": [
              "10.1007/978-3-319-18167-7_23"
            ]
          }, 
          {
            "name": "readcube_id", 
            "type": "PropertyValue", 
            "value": [
              "e428ad62fcbd219965abadefa1f7c50d96e2eed738146280f0f22a49cb276902"
            ]
          }, 
          {
            "name": "dimensions_id", 
            "type": "PropertyValue", 
            "value": [
              "pub.1047894815"
            ]
          }
        ], 
        "publisher": {
          "location": "Cham", 
          "name": "Springer International Publishing", 
          "type": "Organisation"
        }, 
        "sameAs": [
          "https://doi.org/10.1007/978-3-319-18167-7_23", 
          "https://app.dimensions.ai/details/publication/pub.1047894815"
        ], 
        "sdDataset": "chapters", 
        "sdDatePublished": "2019-04-16T00:51", 
        "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
        "sdPublisher": {
          "name": "Springer Nature - SN SciGraph project", 
          "type": "Organization"
        }, 
        "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8700_00000273.jsonl", 
        "type": "Chapter", 
        "url": "http://link.springer.com/10.1007/978-3-319-18167-7_23"
      }
    ]
     

    Download the RDF metadata as:  json-ld nt turtle xml License info

    HOW TO GET THIS DATA PROGRAMMATICALLY:

    JSON-LD is a popular format for linked data which is fully compatible with JSON.

    curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/978-3-319-18167-7_23'

    N-Triples is a line-based linked data format ideal for batch operations.

    curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/978-3-319-18167-7_23'

    Turtle is a human-readable linked data format.

    curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/978-3-319-18167-7_23'

    RDF/XML is a standard XML format for linked data.

    curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/978-3-319-18167-7_23'


     

    This table displays all metadata directly associated to this object as RDF triples.

    129 TRIPLES      23 PREDICATES      30 URIs      20 LITERALS      8 BLANK NODES

    Subject Predicate Object
    1 sg:pub.10.1007/978-3-319-18167-7_23 schema:about anzsrc-for:01
    2 anzsrc-for:0102
    3 schema:author N70933f823c4d4e5b9d4cf4bff6bf27ed
    4 schema:citation sg:pub.10.1007/978-3-642-29124-1_21
    5 sg:pub.10.1007/s11009-008-9073-7
    6 https://doi.org/10.1109/34.1000236
    7 schema:datePublished 2015
    8 schema:datePublishedReg 2015-01-01
    9 schema:description Two simulation–based algorithms are presented, that have been successfully applied to an industrial optimization problem. These two algorithms have different and complementary features. One is fast, and sequential: it proceeds by running a population of targets and by dropping and activating a new sensor (or re–activating a sensor already available) where and when this action seems appropriate. The other is slow, iterative, and non–sequential: it proceeds by updating a population of deployment plans with guaranteed and increasing criterion value at each iteration, and for each given deployment plan, there is a population of targets running to evaluate the criterion. Finally, the two algorithms can cooperate in many different ways, to try and get the best of both approaches. A simple and efficient way is to use the deployment plans provided by the sequential algorithm as the initial population for the iterative algorithm.
    10 schema:editor Nf0b8c5b779494a2cbb41b5d45d530f87
    11 schema:genre chapter
    12 schema:inLanguage en
    13 schema:isAccessibleForFree false
    14 schema:isPartOf Nc21dd7518fca48dd80df85864bc9ccf9
    15 schema:name Simulation–Based Algorithms for the Optimization of Sensor Deployment
    16 schema:pagination 261-272
    17 schema:productId N0f11424e929948d1ab5a6149d908bdcf
    18 N7720eb22bc8540ea9c6ade243c40f64b
    19 Ndf2ee4ba745740a3b066893a366f9072
    20 schema:publisher N0fea4a4ebf424da89469f7fe40419258
    21 schema:sameAs https://app.dimensions.ai/details/publication/pub.1047894815
    22 https://doi.org/10.1007/978-3-319-18167-7_23
    23 schema:sdDatePublished 2019-04-16T00:51
    24 schema:sdLicense https://scigraph.springernature.com/explorer/license/
    25 schema:sdPublisher N38e51071d9264cca82c4a683da7950b4
    26 schema:url http://link.springer.com/10.1007/978-3-319-18167-7_23
    27 sgo:license sg:explorer/license/
    28 sgo:sdDataset chapters
    29 rdf:type schema:Chapter
    30 N0927c98ef87a44a0b31fc231762bb5fe rdf:first Na5b3d2fe197c498ba2b959c47a79f051
    31 rdf:rest rdf:nil
    32 N0f11424e929948d1ab5a6149d908bdcf schema:name dimensions_id
    33 schema:value pub.1047894815
    34 rdf:type schema:PropertyValue
    35 N0fea4a4ebf424da89469f7fe40419258 schema:location Cham
    36 schema:name Springer International Publishing
    37 rdf:type schema:Organisation
    38 N139ce404426b4d4fb57429c5c9132055 rdf:first sg:person.014371661147.40
    39 rdf:rest N5d10dbeb2918469aadaa014597909483
    40 N2faa299cc2fa47418a3cc35560d07de6 schema:familyName Nguyen
    41 schema:givenName Ngoc Thanh
    42 rdf:type schema:Person
    43 N38e51071d9264cca82c4a683da7950b4 schema:name Springer Nature - SN SciGraph project
    44 rdf:type schema:Organization
    45 N43955369580c443b8a3a815d2462e826 schema:familyName Pham Dinh
    46 schema:givenName Tao
    47 rdf:type schema:Person
    48 N5d10dbeb2918469aadaa014597909483 rdf:first sg:person.013011135417.54
    49 rdf:rest N0927c98ef87a44a0b31fc231762bb5fe
    50 N6a68fd611d854d97b32c684b70eff3e5 rdf:first sg:person.07757427211.15
    51 rdf:rest N9d78a271c71b4fce9684703c437e3477
    52 N6dfff6d66b8d40f3875aa5eab06ba73e rdf:first N2faa299cc2fa47418a3cc35560d07de6
    53 rdf:rest rdf:nil
    54 N70933f823c4d4e5b9d4cf4bff6bf27ed rdf:first Nd0275107354c45429e06c13f6bc6b2fc
    55 rdf:rest N6a68fd611d854d97b32c684b70eff3e5
    56 N7720eb22bc8540ea9c6ade243c40f64b schema:name readcube_id
    57 schema:value e428ad62fcbd219965abadefa1f7c50d96e2eed738146280f0f22a49cb276902
    58 rdf:type schema:PropertyValue
    59 N845b1f6d4e264d0fb1d47729027333d7 rdf:first N43955369580c443b8a3a815d2462e826
    60 rdf:rest N6dfff6d66b8d40f3875aa5eab06ba73e
    61 N9572e3a714914b17b7e42f3a957273d0 schema:familyName Le Thi
    62 schema:givenName Hoai An
    63 rdf:type schema:Person
    64 N9d78a271c71b4fce9684703c437e3477 rdf:first sg:person.011377561312.36
    65 rdf:rest N139ce404426b4d4fb57429c5c9132055
    66 Na5b3d2fe197c498ba2b959c47a79f051 schema:affiliation Nafec19da12904f059763e9d5353aa28a
    67 schema:familyName Vasta
    68 schema:givenName Émile
    69 rdf:type schema:Person
    70 Nafec19da12904f059763e9d5353aa28a schema:name DGA Techniques navales, Toulon, France
    71 rdf:type schema:Organization
    72 Nc21dd7518fca48dd80df85864bc9ccf9 schema:isbn 978-3-319-18166-0
    73 978-3-319-18167-7
    74 schema:name Modelling, Computation and Optimization in Information Systems and Management Sciences
    75 rdf:type schema:Book
    76 Nd0275107354c45429e06c13f6bc6b2fc schema:affiliation https://www.grid.ac/institutes/grid.12611.35
    77 schema:familyName Kenné
    78 schema:givenName Yannick
    79 rdf:type schema:Person
    80 Nde4770efced7455bb5751a8cee7df72c schema:name DGA Techniques navales, Toulon, France
    81 rdf:type schema:Organization
    82 Ndf2ee4ba745740a3b066893a366f9072 schema:name doi
    83 schema:value 10.1007/978-3-319-18167-7_23
    84 rdf:type schema:PropertyValue
    85 Nf0b8c5b779494a2cbb41b5d45d530f87 rdf:first N9572e3a714914b17b7e42f3a957273d0
    86 rdf:rest N845b1f6d4e264d0fb1d47729027333d7
    87 anzsrc-for:01 schema:inDefinedTermSet anzsrc-for:
    88 schema:name Mathematical Sciences
    89 rdf:type schema:DefinedTerm
    90 anzsrc-for:0102 schema:inDefinedTermSet anzsrc-for:
    91 schema:name Applied Mathematics
    92 rdf:type schema:DefinedTerm
    93 sg:person.011377561312.36 schema:affiliation https://www.grid.ac/institutes/grid.4365.4
    94 schema:familyName Musso
    95 schema:givenName Christian
    96 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011377561312.36
    97 rdf:type schema:Person
    98 sg:person.013011135417.54 schema:affiliation Nde4770efced7455bb5751a8cee7df72c
    99 schema:familyName Glemarec
    100 schema:givenName Yannick
    101 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013011135417.54
    102 rdf:type schema:Person
    103 sg:person.014371661147.40 schema:affiliation https://www.grid.ac/institutes/grid.12611.35
    104 schema:familyName Paris
    105 schema:givenName Sébastien
    106 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014371661147.40
    107 rdf:type schema:Person
    108 sg:person.07757427211.15 schema:affiliation https://www.grid.ac/institutes/grid.5328.c
    109 schema:familyName Le Gland
    110 schema:givenName François
    111 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07757427211.15
    112 rdf:type schema:Person
    113 sg:pub.10.1007/978-3-642-29124-1_21 schema:sameAs https://app.dimensions.ai/details/publication/pub.1008145367
    114 https://doi.org/10.1007/978-3-642-29124-1_21
    115 rdf:type schema:CreativeWork
    116 sg:pub.10.1007/s11009-008-9073-7 schema:sameAs https://app.dimensions.ai/details/publication/pub.1002752311
    117 https://doi.org/10.1007/s11009-008-9073-7
    118 rdf:type schema:CreativeWork
    119 https://doi.org/10.1109/34.1000236 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061155588
    120 rdf:type schema:CreativeWork
    121 https://www.grid.ac/institutes/grid.12611.35 schema:alternateName Universite De Toulon Et Du Var
    122 schema:name Université de Toulon/LSIS, Toulon, France
    123 rdf:type schema:Organization
    124 https://www.grid.ac/institutes/grid.4365.4 schema:alternateName Office National d'Études et de Recherches Aérospatiales
    125 schema:name ONERA, Palaiseau, France
    126 rdf:type schema:Organization
    127 https://www.grid.ac/institutes/grid.5328.c schema:alternateName French Institute for Research in Computer Science and Automation
    128 schema:name INRIA, Rennes, France
    129 rdf:type schema:Organization
     




    Preview window. Press ESC to close (or click here)


    ...