The Pythagorean Theorem View Full Text


Ontology type: schema:Chapter     


Chapter Info

DATE

2015

AUTHORS

John W. Dawson

ABSTRACT

The Pythagorean Theorem is one of the oldest, best known, and most useful theorems in all of mathematics, and it has also surely been proved in more different ways than any other. Euclid gave two proofs of it in the Elements, as Proposition I,47, and also as Proposition VI,31, a more general but less well-known formulation concerning arbitrary ‘figures’ described on the sides of a right triangle. The first of those demonstrations is based on a comparison of areas and the second on similarity theory, a basic distinction that can be used as a first step in classifying many other proofs of the theorem as well. More... »

PAGES

25-39

Book

TITLE

Why Prove it Again?

ISBN

978-3-319-17367-2
978-3-319-17368-9

Author Affiliations

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/978-3-319-17368-9_5

DOI

http://dx.doi.org/10.1007/978-3-319-17368-9_5

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1041705561


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0101", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Pure Mathematics", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/01", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Mathematical Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Penn State York", 
          "id": "https://www.grid.ac/institutes/grid.261815.9", 
          "name": [
            "Penn State York"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Dawson", 
        "givenName": "John W.", 
        "id": "sg:person.011124062661.56", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011124062661.56"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1007/978-94-010-1754-1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1004627965", 
          "https://doi.org/10.1007/978-94-010-1754-1"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-94-010-1754-1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1004627965", 
          "https://doi.org/10.1007/978-94-010-1754-1"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2015", 
    "datePublishedReg": "2015-01-01", 
    "description": "The Pythagorean Theorem is one of the oldest, best known, and most useful theorems in all of mathematics, and it has also surely been proved in more different ways than any other. Euclid gave two proofs of it in the Elements, as Proposition I,47, and also as Proposition VI,31, a more general but less well-known formulation concerning arbitrary \u2018figures\u2019 described on the sides of a right triangle. The first of those demonstrations is based on a comparison of areas and the second on similarity theory, a basic distinction that can be used as a first step in classifying many other proofs of the theorem as well.", 
    "genre": "chapter", 
    "id": "sg:pub.10.1007/978-3-319-17368-9_5", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": {
      "isbn": [
        "978-3-319-17367-2", 
        "978-3-319-17368-9"
      ], 
      "name": "Why Prove it Again?", 
      "type": "Book"
    }, 
    "name": "The Pythagorean Theorem", 
    "pagination": "25-39", 
    "productId": [
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/978-3-319-17368-9_5"
        ]
      }, 
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "c6ab18f1dea26bf432cb65b90e4f023e4507f70e3239380b90b745e2f9af44db"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1041705561"
        ]
      }
    ], 
    "publisher": {
      "location": "Cham", 
      "name": "Springer International Publishing", 
      "type": "Organisation"
    }, 
    "sameAs": [
      "https://doi.org/10.1007/978-3-319-17368-9_5", 
      "https://app.dimensions.ai/details/publication/pub.1041705561"
    ], 
    "sdDataset": "chapters", 
    "sdDatePublished": "2019-04-15T17:15", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8678_00000269.jsonl", 
    "type": "Chapter", 
    "url": "http://link.springer.com/10.1007/978-3-319-17368-9_5"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/978-3-319-17368-9_5'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/978-3-319-17368-9_5'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/978-3-319-17368-9_5'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/978-3-319-17368-9_5'


 

This table displays all metadata directly associated to this object as RDF triples.

63 TRIPLES      22 PREDICATES      27 URIs      19 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/978-3-319-17368-9_5 schema:about anzsrc-for:01
2 anzsrc-for:0101
3 schema:author N45fd20b1a8e049c2a1c7796b96bf3848
4 schema:citation sg:pub.10.1007/978-94-010-1754-1
5 schema:datePublished 2015
6 schema:datePublishedReg 2015-01-01
7 schema:description The Pythagorean Theorem is one of the oldest, best known, and most useful theorems in all of mathematics, and it has also surely been proved in more different ways than any other. Euclid gave two proofs of it in the Elements, as Proposition I,47, and also as Proposition VI,31, a more general but less well-known formulation concerning arbitrary ‘figures’ described on the sides of a right triangle. The first of those demonstrations is based on a comparison of areas and the second on similarity theory, a basic distinction that can be used as a first step in classifying many other proofs of the theorem as well.
8 schema:genre chapter
9 schema:inLanguage en
10 schema:isAccessibleForFree false
11 schema:isPartOf N8a85f4b3193842ac9a303cd2a1def662
12 schema:name The Pythagorean Theorem
13 schema:pagination 25-39
14 schema:productId N0aac25bdae1f4fba9aff336117937cfc
15 N4bf8e03b25b144d18dcd67e7fff95108
16 N5aa7a685a37347969adcea0179c03e91
17 schema:publisher N21c726d4b83e47758a74d29b90bb8ecf
18 schema:sameAs https://app.dimensions.ai/details/publication/pub.1041705561
19 https://doi.org/10.1007/978-3-319-17368-9_5
20 schema:sdDatePublished 2019-04-15T17:15
21 schema:sdLicense https://scigraph.springernature.com/explorer/license/
22 schema:sdPublisher N9cc944e294f84e35afcfe817e21511c6
23 schema:url http://link.springer.com/10.1007/978-3-319-17368-9_5
24 sgo:license sg:explorer/license/
25 sgo:sdDataset chapters
26 rdf:type schema:Chapter
27 N0aac25bdae1f4fba9aff336117937cfc schema:name readcube_id
28 schema:value c6ab18f1dea26bf432cb65b90e4f023e4507f70e3239380b90b745e2f9af44db
29 rdf:type schema:PropertyValue
30 N21c726d4b83e47758a74d29b90bb8ecf schema:location Cham
31 schema:name Springer International Publishing
32 rdf:type schema:Organisation
33 N45fd20b1a8e049c2a1c7796b96bf3848 rdf:first sg:person.011124062661.56
34 rdf:rest rdf:nil
35 N4bf8e03b25b144d18dcd67e7fff95108 schema:name doi
36 schema:value 10.1007/978-3-319-17368-9_5
37 rdf:type schema:PropertyValue
38 N5aa7a685a37347969adcea0179c03e91 schema:name dimensions_id
39 schema:value pub.1041705561
40 rdf:type schema:PropertyValue
41 N8a85f4b3193842ac9a303cd2a1def662 schema:isbn 978-3-319-17367-2
42 978-3-319-17368-9
43 schema:name Why Prove it Again?
44 rdf:type schema:Book
45 N9cc944e294f84e35afcfe817e21511c6 schema:name Springer Nature - SN SciGraph project
46 rdf:type schema:Organization
47 anzsrc-for:01 schema:inDefinedTermSet anzsrc-for:
48 schema:name Mathematical Sciences
49 rdf:type schema:DefinedTerm
50 anzsrc-for:0101 schema:inDefinedTermSet anzsrc-for:
51 schema:name Pure Mathematics
52 rdf:type schema:DefinedTerm
53 sg:person.011124062661.56 schema:affiliation https://www.grid.ac/institutes/grid.261815.9
54 schema:familyName Dawson
55 schema:givenName John W.
56 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011124062661.56
57 rdf:type schema:Person
58 sg:pub.10.1007/978-94-010-1754-1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1004627965
59 https://doi.org/10.1007/978-94-010-1754-1
60 rdf:type schema:CreativeWork
61 https://www.grid.ac/institutes/grid.261815.9 schema:alternateName Penn State York
62 schema:name Penn State York
63 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...