Quadratic Surds View Full Text


Ontology type: schema:Chapter     


Chapter Info

DATE

2015

AUTHORS

John W. Dawson

ABSTRACT

This chapter provides an example of how an alternative proof may be used to provide a rational reconstruction of a historical practice. It concerns the following well-known Theorem: \(\sqrt{n}\) is rational if and only if it is integral, that is, if and only if n is a perfect square.

PAGES

19-23

Book

TITLE

Why Prove it Again?

ISBN

978-3-319-17367-2
978-3-319-17368-9

Author Affiliations

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/978-3-319-17368-9_4

DOI

http://dx.doi.org/10.1007/978-3-319-17368-9_4

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1047325361


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "author": [
      {
        "affiliation": {
          "alternateName": "Penn State York", 
          "id": "https://www.grid.ac/institutes/grid.261815.9", 
          "name": [
            "Penn State York"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Dawson", 
        "givenName": "John W.", 
        "id": "sg:person.011124062661.56", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011124062661.56"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1007/978-94-010-1754-1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1004627965", 
          "https://doi.org/10.1007/978-94-010-1754-1"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-94-010-1754-1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1004627965", 
          "https://doi.org/10.1007/978-94-010-1754-1"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.5962/bhl.title.18727", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1099459084"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2015", 
    "datePublishedReg": "2015-01-01", 
    "description": "This chapter provides an example of how an alternative proof may be used to provide a rational reconstruction of a historical practice. It concerns the following well-known Theorem: \\(\\sqrt{n}\\) is rational if and only if it is integral, that is, if and only if n is a perfect square.", 
    "genre": "chapter", 
    "id": "sg:pub.10.1007/978-3-319-17368-9_4", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": {
      "isbn": [
        "978-3-319-17367-2", 
        "978-3-319-17368-9"
      ], 
      "name": "Why Prove it Again?", 
      "type": "Book"
    }, 
    "name": "Quadratic Surds", 
    "pagination": "19-23", 
    "productId": [
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/978-3-319-17368-9_4"
        ]
      }, 
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "e1719ced39ec7cb8fcaa2169a13fa1e9dc154a6765e4c8cb3a74bd9f372fcc15"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1047325361"
        ]
      }
    ], 
    "publisher": {
      "location": "Cham", 
      "name": "Springer International Publishing", 
      "type": "Organisation"
    }, 
    "sameAs": [
      "https://doi.org/10.1007/978-3-319-17368-9_4", 
      "https://app.dimensions.ai/details/publication/pub.1047325361"
    ], 
    "sdDataset": "chapters", 
    "sdDatePublished": "2019-04-15T21:48", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8693_00000081.jsonl", 
    "type": "Chapter", 
    "url": "http://link.springer.com/10.1007/978-3-319-17368-9_4"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/978-3-319-17368-9_4'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/978-3-319-17368-9_4'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/978-3-319-17368-9_4'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/978-3-319-17368-9_4'


 

This table displays all metadata directly associated to this object as RDF triples.

58 TRIPLES      21 PREDICATES      26 URIs      19 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/978-3-319-17368-9_4 schema:author Nde6a6f7992834d30b4a40ffa361e1812
2 schema:citation sg:pub.10.1007/978-94-010-1754-1
3 https://doi.org/10.5962/bhl.title.18727
4 schema:datePublished 2015
5 schema:datePublishedReg 2015-01-01
6 schema:description This chapter provides an example of how an alternative proof may be used to provide a rational reconstruction of a historical practice. It concerns the following well-known Theorem: \(\sqrt{n}\) is rational if and only if it is integral, that is, if and only if n is a perfect square.
7 schema:genre chapter
8 schema:inLanguage en
9 schema:isAccessibleForFree false
10 schema:isPartOf N1768b4f4b4d74c6b99cba06f9adee60b
11 schema:name Quadratic Surds
12 schema:pagination 19-23
13 schema:productId N3545b914b68a4d5492d5c97af7f4abb8
14 N63bb4e63831d4150b9ea437a4cca8ec4
15 N7e3bebe42c7a4fa3ae3d82b86b6e2c39
16 schema:publisher N46d0ae1873604e24a925bd47d9437b25
17 schema:sameAs https://app.dimensions.ai/details/publication/pub.1047325361
18 https://doi.org/10.1007/978-3-319-17368-9_4
19 schema:sdDatePublished 2019-04-15T21:48
20 schema:sdLicense https://scigraph.springernature.com/explorer/license/
21 schema:sdPublisher N72ebd0b3ae63436f84adaf5f163ec2ae
22 schema:url http://link.springer.com/10.1007/978-3-319-17368-9_4
23 sgo:license sg:explorer/license/
24 sgo:sdDataset chapters
25 rdf:type schema:Chapter
26 N1768b4f4b4d74c6b99cba06f9adee60b schema:isbn 978-3-319-17367-2
27 978-3-319-17368-9
28 schema:name Why Prove it Again?
29 rdf:type schema:Book
30 N3545b914b68a4d5492d5c97af7f4abb8 schema:name dimensions_id
31 schema:value pub.1047325361
32 rdf:type schema:PropertyValue
33 N46d0ae1873604e24a925bd47d9437b25 schema:location Cham
34 schema:name Springer International Publishing
35 rdf:type schema:Organisation
36 N63bb4e63831d4150b9ea437a4cca8ec4 schema:name doi
37 schema:value 10.1007/978-3-319-17368-9_4
38 rdf:type schema:PropertyValue
39 N72ebd0b3ae63436f84adaf5f163ec2ae schema:name Springer Nature - SN SciGraph project
40 rdf:type schema:Organization
41 N7e3bebe42c7a4fa3ae3d82b86b6e2c39 schema:name readcube_id
42 schema:value e1719ced39ec7cb8fcaa2169a13fa1e9dc154a6765e4c8cb3a74bd9f372fcc15
43 rdf:type schema:PropertyValue
44 Nde6a6f7992834d30b4a40ffa361e1812 rdf:first sg:person.011124062661.56
45 rdf:rest rdf:nil
46 sg:person.011124062661.56 schema:affiliation https://www.grid.ac/institutes/grid.261815.9
47 schema:familyName Dawson
48 schema:givenName John W.
49 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011124062661.56
50 rdf:type schema:Person
51 sg:pub.10.1007/978-94-010-1754-1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1004627965
52 https://doi.org/10.1007/978-94-010-1754-1
53 rdf:type schema:CreativeWork
54 https://doi.org/10.5962/bhl.title.18727 schema:sameAs https://app.dimensions.ai/details/publication/pub.1099459084
55 rdf:type schema:CreativeWork
56 https://www.grid.ac/institutes/grid.261815.9 schema:alternateName Penn State York
57 schema:name Penn State York
58 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...