New Examples of Non-Abelian Group Codes View Full Text


Ontology type: schema:Chapter     


Chapter Info

DATE

2015

AUTHORS

Cristina García Pillado , Santos González , Victor Markov , Consuelo Martínez , Alexandr Nechaev

ABSTRACT

It has been known some time ago that there are one-sided group codes that are not abelian codes, however the similar question for group codes was not known until we constructed an example of a non-abelian group code using the group ring \(F_{5}S_{4}\). The proof needs some computational help, since we need to know the weight distribution of all abelian codes of length 24 over the prime field of 5 elements. It is natural to ask, is it really relevant that the group ring is semisimple? What happens in the case of characteristic 2 and 3? Our interest to these questions is connected also with the following open question: does the property of all group codes for the given group to be abelian depend on the choice of the base field (the similar property for left group codes does)? We have addressed this question, again with computer help, proving that there are also examples of non-abelian group codes in the non-semisimple case. The results show some interesting differences between the cases of characteristic 2 and 3. Moreover, using the group SL(2, F 3) instead of the symmetric group we can prove, without using a computer for it, that there is a code over F 2 of length 24, dimension 6 and minimal weight 10. It has greater minimum distance than any abelian group code having the same length and dimension over F 2, and moreover this code has the greatest minimum distance among all binary linear codes with the same length and dimension. The existence of such code gives a good reason to study non-abelian group codes. More... »

PAGES

203-208

References to SciGraph publications

  • 2009-06. An intrinsical description of group codes in DESIGNS, CODES AND CRYPTOGRAPHY
  • 2012-10. When are all group codes of a noncommutative group Abelian (a computational approach)? in JOURNAL OF MATHEMATICAL SCIENCES
  • Book

    TITLE

    Coding Theory and Applications

    ISBN

    978-3-319-17295-8
    978-3-319-17296-5

    Author Affiliations

    From Grant

    Identifiers

    URI

    http://scigraph.springernature.com/pub.10.1007/978-3-319-17296-5_21

    DOI

    http://dx.doi.org/10.1007/978-3-319-17296-5_21

    DIMENSIONS

    https://app.dimensions.ai/details/publication/pub.1034134743


    Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
    Incoming Citations Browse incoming citations for this publication using opencitations.net

    JSON-LD is the canonical representation for SciGraph data.

    TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

    [
      {
        "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
        "about": [
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0802", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Computation Theory and Mathematics", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/08", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Information and Computing Sciences", 
            "type": "DefinedTerm"
          }
        ], 
        "author": [
          {
            "affiliation": {
              "name": [
                "Department of Mathematics, University of Oviedo"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Pillado", 
            "givenName": "Cristina Garc\u00eda", 
            "id": "sg:person.015266075521.07", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015266075521.07"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "name": [
                "Department of Mathematics, University of Oviedo"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Gonz\u00e1lez", 
            "givenName": "Santos", 
            "id": "sg:person.016661036521.95", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016661036521.95"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Moscow State University", 
              "id": "https://www.grid.ac/institutes/grid.14476.30", 
              "name": [
                "Department of Mechanics and Mathematics, Moscow State University"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Markov", 
            "givenName": "Victor", 
            "id": "sg:person.013530345023.45", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013530345023.45"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "name": [
                "Department of Mathematics, University of Oviedo"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Mart\u00ednez", 
            "givenName": "Consuelo", 
            "id": "sg:person.015261576461.61", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015261576461.61"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Moscow State University", 
              "id": "https://www.grid.ac/institutes/grid.14476.30", 
              "name": [
                "Department of Mechanics and Mathematics, Moscow State University"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Nechaev", 
            "givenName": "Alexandr", 
            "id": "sg:person.014732131216.16", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014732131216.16"
            ], 
            "type": "Person"
          }
        ], 
        "citation": [
          {
            "id": "https://doi.org/10.1515/156939204872347", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1017844051"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s10958-012-1006-x", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1023394388", 
              "https://doi.org/10.1007/s10958-012-1006-x"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s10623-008-9261-z", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1049896548", 
              "https://doi.org/10.1007/s10623-008-9261-z"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1142/s0219498813500370", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1062996205"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1090/chel/356", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1098755834"
            ], 
            "type": "CreativeWork"
          }
        ], 
        "datePublished": "2015", 
        "datePublishedReg": "2015-01-01", 
        "description": "It has been known some time ago that there are one-sided group codes that are not abelian codes, however the similar question for group codes was not known until we constructed an example of a non-abelian group code using the group ring \\(F_{5}S_{4}\\). The proof needs some computational help, since we need to know the weight distribution of all abelian codes of length 24 over the prime field of 5 elements. It is natural to ask, is it really relevant that the group ring is semisimple? What happens in the case of characteristic 2 and 3? Our interest to these questions is connected also with the following open question: does the property of all group codes for the given group to be abelian depend on the choice of the base field (the similar property for left group codes does)? We have addressed this question, again with computer help, proving that there are also examples of non-abelian group codes in the non-semisimple case. The results show some interesting differences between the cases of characteristic 2 and 3. Moreover, using the group SL(2,\u2009F 3) instead of the symmetric group we can prove, without using a computer for it, that there is a code over F 2 of length 24, dimension 6 and minimal weight 10. It has greater minimum distance than any abelian group code having the same length and dimension over F 2, and moreover this code has the greatest minimum distance among all binary linear codes with the same length and dimension. The existence of such code gives a good reason to study non-abelian group codes.", 
        "editor": [
          {
            "familyName": "Pinto", 
            "givenName": "Raquel", 
            "type": "Person"
          }, 
          {
            "familyName": "Rocha Malonek", 
            "givenName": "Paula", 
            "type": "Person"
          }, 
          {
            "familyName": "Vettori", 
            "givenName": "Paolo", 
            "type": "Person"
          }
        ], 
        "genre": "chapter", 
        "id": "sg:pub.10.1007/978-3-319-17296-5_21", 
        "inLanguage": [
          "en"
        ], 
        "isAccessibleForFree": false, 
        "isFundedItemOf": [
          {
            "id": "sg:grant.5350168", 
            "type": "MonetaryGrant"
          }
        ], 
        "isPartOf": {
          "isbn": [
            "978-3-319-17295-8", 
            "978-3-319-17296-5"
          ], 
          "name": "Coding Theory and Applications", 
          "type": "Book"
        }, 
        "name": "New Examples of Non-Abelian Group Codes", 
        "pagination": "203-208", 
        "productId": [
          {
            "name": "doi", 
            "type": "PropertyValue", 
            "value": [
              "10.1007/978-3-319-17296-5_21"
            ]
          }, 
          {
            "name": "readcube_id", 
            "type": "PropertyValue", 
            "value": [
              "a29b781f0f8ea96efda769b6789ed0d537d8626c0d5190c784ea65b0ed5384fb"
            ]
          }, 
          {
            "name": "dimensions_id", 
            "type": "PropertyValue", 
            "value": [
              "pub.1034134743"
            ]
          }
        ], 
        "publisher": {
          "location": "Cham", 
          "name": "Springer International Publishing", 
          "type": "Organisation"
        }, 
        "sameAs": [
          "https://doi.org/10.1007/978-3-319-17296-5_21", 
          "https://app.dimensions.ai/details/publication/pub.1034134743"
        ], 
        "sdDataset": "chapters", 
        "sdDatePublished": "2019-04-15T19:10", 
        "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
        "sdPublisher": {
          "name": "Springer Nature - SN SciGraph project", 
          "type": "Organization"
        }, 
        "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8684_00000264.jsonl", 
        "type": "Chapter", 
        "url": "http://link.springer.com/10.1007/978-3-319-17296-5_21"
      }
    ]
     

    Download the RDF metadata as:  json-ld nt turtle xml License info

    HOW TO GET THIS DATA PROGRAMMATICALLY:

    JSON-LD is a popular format for linked data which is fully compatible with JSON.

    curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/978-3-319-17296-5_21'

    N-Triples is a line-based linked data format ideal for batch operations.

    curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/978-3-319-17296-5_21'

    Turtle is a human-readable linked data format.

    curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/978-3-319-17296-5_21'

    RDF/XML is a standard XML format for linked data.

    curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/978-3-319-17296-5_21'


     

    This table displays all metadata directly associated to this object as RDF triples.

    128 TRIPLES      23 PREDICATES      32 URIs      20 LITERALS      8 BLANK NODES

    Subject Predicate Object
    1 sg:pub.10.1007/978-3-319-17296-5_21 schema:about anzsrc-for:08
    2 anzsrc-for:0802
    3 schema:author N0546441193684b79b8fcb873f91967cd
    4 schema:citation sg:pub.10.1007/s10623-008-9261-z
    5 sg:pub.10.1007/s10958-012-1006-x
    6 https://doi.org/10.1090/chel/356
    7 https://doi.org/10.1142/s0219498813500370
    8 https://doi.org/10.1515/156939204872347
    9 schema:datePublished 2015
    10 schema:datePublishedReg 2015-01-01
    11 schema:description It has been known some time ago that there are one-sided group codes that are not abelian codes, however the similar question for group codes was not known until we constructed an example of a non-abelian group code using the group ring \(F_{5}S_{4}\). The proof needs some computational help, since we need to know the weight distribution of all abelian codes of length 24 over the prime field of 5 elements. It is natural to ask, is it really relevant that the group ring is semisimple? What happens in the case of characteristic 2 and 3? Our interest to these questions is connected also with the following open question: does the property of all group codes for the given group to be abelian depend on the choice of the base field (the similar property for left group codes does)? We have addressed this question, again with computer help, proving that there are also examples of non-abelian group codes in the non-semisimple case. The results show some interesting differences between the cases of characteristic 2 and 3. Moreover, using the group SL(2, F 3) instead of the symmetric group we can prove, without using a computer for it, that there is a code over F 2 of length 24, dimension 6 and minimal weight 10. It has greater minimum distance than any abelian group code having the same length and dimension over F 2, and moreover this code has the greatest minimum distance among all binary linear codes with the same length and dimension. The existence of such code gives a good reason to study non-abelian group codes.
    12 schema:editor Na3f3700872cb458eadddbeb7eabd642c
    13 schema:genre chapter
    14 schema:inLanguage en
    15 schema:isAccessibleForFree false
    16 schema:isPartOf Naaebd7d2c9534dd9b636f08a9733884e
    17 schema:name New Examples of Non-Abelian Group Codes
    18 schema:pagination 203-208
    19 schema:productId N327a1159b1c04025b803d027df143b62
    20 N62a661df0590490bbd242a7e0ad9a34d
    21 Nf808076d77f34f9c8d73649e0bbf820b
    22 schema:publisher Nba25097c8ad64a21aa91ee9e209ba345
    23 schema:sameAs https://app.dimensions.ai/details/publication/pub.1034134743
    24 https://doi.org/10.1007/978-3-319-17296-5_21
    25 schema:sdDatePublished 2019-04-15T19:10
    26 schema:sdLicense https://scigraph.springernature.com/explorer/license/
    27 schema:sdPublisher Ndedfafbccb7e4f3f803a76f0750969e8
    28 schema:url http://link.springer.com/10.1007/978-3-319-17296-5_21
    29 sgo:license sg:explorer/license/
    30 sgo:sdDataset chapters
    31 rdf:type schema:Chapter
    32 N0546441193684b79b8fcb873f91967cd rdf:first sg:person.015266075521.07
    33 rdf:rest N06dfc7ba9b8f494ea79eb9146b2a0f33
    34 N06dfc7ba9b8f494ea79eb9146b2a0f33 rdf:first sg:person.016661036521.95
    35 rdf:rest N6a221967e40e47a69e615bf8808f2244
    36 N0b134558985b427ca8365ec60bcbaa7d schema:familyName Vettori
    37 schema:givenName Paolo
    38 rdf:type schema:Person
    39 N1752118fb7a34566b32768454ef07813 schema:name Department of Mathematics, University of Oviedo
    40 rdf:type schema:Organization
    41 N1d14400122e84c1ba4e95b6a9e459338 rdf:first sg:person.015261576461.61
    42 rdf:rest N801d32c209dd4eea86c43374fa813bb2
    43 N327a1159b1c04025b803d027df143b62 schema:name readcube_id
    44 schema:value a29b781f0f8ea96efda769b6789ed0d537d8626c0d5190c784ea65b0ed5384fb
    45 rdf:type schema:PropertyValue
    46 N35250dd634ec458390d283955fb188ef schema:familyName Rocha Malonek
    47 schema:givenName Paula
    48 rdf:type schema:Person
    49 N372cc51624404110a28841c543c0fe46 rdf:first N0b134558985b427ca8365ec60bcbaa7d
    50 rdf:rest rdf:nil
    51 N62a661df0590490bbd242a7e0ad9a34d schema:name doi
    52 schema:value 10.1007/978-3-319-17296-5_21
    53 rdf:type schema:PropertyValue
    54 N6a221967e40e47a69e615bf8808f2244 rdf:first sg:person.013530345023.45
    55 rdf:rest N1d14400122e84c1ba4e95b6a9e459338
    56 N7ad33097d50546febaef53024f807d31 rdf:first N35250dd634ec458390d283955fb188ef
    57 rdf:rest N372cc51624404110a28841c543c0fe46
    58 N801d32c209dd4eea86c43374fa813bb2 rdf:first sg:person.014732131216.16
    59 rdf:rest rdf:nil
    60 Na3f3700872cb458eadddbeb7eabd642c rdf:first Nb9fa7b7b3980433490e503b33677c049
    61 rdf:rest N7ad33097d50546febaef53024f807d31
    62 Naaebd7d2c9534dd9b636f08a9733884e schema:isbn 978-3-319-17295-8
    63 978-3-319-17296-5
    64 schema:name Coding Theory and Applications
    65 rdf:type schema:Book
    66 Nb931c3e13ae9433aa2994f4ca7b25b9d schema:name Department of Mathematics, University of Oviedo
    67 rdf:type schema:Organization
    68 Nb9fa7b7b3980433490e503b33677c049 schema:familyName Pinto
    69 schema:givenName Raquel
    70 rdf:type schema:Person
    71 Nba25097c8ad64a21aa91ee9e209ba345 schema:location Cham
    72 schema:name Springer International Publishing
    73 rdf:type schema:Organisation
    74 Nbfb214c28d1c482cb4b6fc6611b3b88f schema:name Department of Mathematics, University of Oviedo
    75 rdf:type schema:Organization
    76 Ndedfafbccb7e4f3f803a76f0750969e8 schema:name Springer Nature - SN SciGraph project
    77 rdf:type schema:Organization
    78 Nf808076d77f34f9c8d73649e0bbf820b schema:name dimensions_id
    79 schema:value pub.1034134743
    80 rdf:type schema:PropertyValue
    81 anzsrc-for:08 schema:inDefinedTermSet anzsrc-for:
    82 schema:name Information and Computing Sciences
    83 rdf:type schema:DefinedTerm
    84 anzsrc-for:0802 schema:inDefinedTermSet anzsrc-for:
    85 schema:name Computation Theory and Mathematics
    86 rdf:type schema:DefinedTerm
    87 sg:grant.5350168 http://pending.schema.org/fundedItem sg:pub.10.1007/978-3-319-17296-5_21
    88 rdf:type schema:MonetaryGrant
    89 sg:person.013530345023.45 schema:affiliation https://www.grid.ac/institutes/grid.14476.30
    90 schema:familyName Markov
    91 schema:givenName Victor
    92 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013530345023.45
    93 rdf:type schema:Person
    94 sg:person.014732131216.16 schema:affiliation https://www.grid.ac/institutes/grid.14476.30
    95 schema:familyName Nechaev
    96 schema:givenName Alexandr
    97 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014732131216.16
    98 rdf:type schema:Person
    99 sg:person.015261576461.61 schema:affiliation Nb931c3e13ae9433aa2994f4ca7b25b9d
    100 schema:familyName Martínez
    101 schema:givenName Consuelo
    102 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015261576461.61
    103 rdf:type schema:Person
    104 sg:person.015266075521.07 schema:affiliation N1752118fb7a34566b32768454ef07813
    105 schema:familyName Pillado
    106 schema:givenName Cristina García
    107 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015266075521.07
    108 rdf:type schema:Person
    109 sg:person.016661036521.95 schema:affiliation Nbfb214c28d1c482cb4b6fc6611b3b88f
    110 schema:familyName González
    111 schema:givenName Santos
    112 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016661036521.95
    113 rdf:type schema:Person
    114 sg:pub.10.1007/s10623-008-9261-z schema:sameAs https://app.dimensions.ai/details/publication/pub.1049896548
    115 https://doi.org/10.1007/s10623-008-9261-z
    116 rdf:type schema:CreativeWork
    117 sg:pub.10.1007/s10958-012-1006-x schema:sameAs https://app.dimensions.ai/details/publication/pub.1023394388
    118 https://doi.org/10.1007/s10958-012-1006-x
    119 rdf:type schema:CreativeWork
    120 https://doi.org/10.1090/chel/356 schema:sameAs https://app.dimensions.ai/details/publication/pub.1098755834
    121 rdf:type schema:CreativeWork
    122 https://doi.org/10.1142/s0219498813500370 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062996205
    123 rdf:type schema:CreativeWork
    124 https://doi.org/10.1515/156939204872347 schema:sameAs https://app.dimensions.ai/details/publication/pub.1017844051
    125 rdf:type schema:CreativeWork
    126 https://www.grid.ac/institutes/grid.14476.30 schema:alternateName Moscow State University
    127 schema:name Department of Mechanics and Mathematics, Moscow State University
    128 rdf:type schema:Organization
     




    Preview window. Press ESC to close (or click here)


    ...