# A Linear Time Algorithm for Determining Almost Bipartite Graphs

Ontology type: schema:Chapter

### Chapter Info

DATE

2015-04-16

AUTHORS ABSTRACT

A graph \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$G\,=\,(V,E)$$\end{document} is called almost bipartite if \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$G$$\end{document} is not bipartite, but there exists a vertex \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$v\in V$$\end{document} such that \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$G-\{v\}$$\end{document} is bipartite. We consider the problem of testing if \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$G$$\end{document} is almost bipartite or not.This problem arises from the study on the \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$k$$\end{document}-arch layout problem. It is known that, given a graph \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$G$$\end{document} and an integer \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$k\ge 2$$\end{document}, it is NP-complete to determine if \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$G$$\end{document} has a \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$k$$\end{document}-arch layout. On the other hand, \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$G$$\end{document} has a 1-arch layout if and only if \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$G$$\end{document} is almost bipartite [3]. It is straightforward to test if \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$G$$\end{document} is almost bipartite in \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$O(n(n+m))$$\end{document} time by using depth first search.In this paper, we present a simple linear time algorithm for solving this problem. The efficiency of the algorithm is achieved by sophisticated applications of depth first search tree and the study of the structure of such graphs. More... »

PAGES

164-176

### Book

TITLE

Theory and Applications of Models of Computation

ISBN

978-3-319-17141-8
978-3-319-17142-5

### Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/978-3-319-17142-5_15

DOI

http://dx.doi.org/10.1007/978-3-319-17142-5_15

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1023363747

Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service:

[
{
"@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json",
{
"id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/08",
"inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/",
"name": "Information and Computing Sciences",
"type": "DefinedTerm"
},
{
"id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0802",
"inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/",
"name": "Computation Theory and Mathematics",
"type": "DefinedTerm"
}
],
"author": [
{
"affiliation": {
"alternateName": "Department of Computer Science and Engineering, University at Buffalo, 14260, Buffalo, NY, USA",
"id": "http://www.grid.ac/institutes/grid.273335.3",
"name": [
"Department of Computer Science and Engineering, University at Buffalo, 14260, Buffalo, NY, USA"
],
"type": "Organization"
},
"familyName": "He",
"givenName": "Dayu",
"id": "sg:person.011772764733.17",
"sameAs": [
"https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011772764733.17"
],
"type": "Person"
},
{
"affiliation": {
"alternateName": "Department of Computer Science and Engineering, University at Buffalo, 14260, Buffalo, NY, USA",
"id": "http://www.grid.ac/institutes/grid.273335.3",
"name": [
"Department of Computer Science and Engineering, University at Buffalo, 14260, Buffalo, NY, USA"
],
"type": "Organization"
},
"familyName": "He",
"givenName": "Xin",
"id": "sg:person.011352641523.42",
"sameAs": [
"https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011352641523.42"
],
"type": "Person"
}
],
"datePublished": "2015-04-16",
"datePublishedReg": "2015-04-16",
"description": "A graph \\documentclass[12pt]{minimal}\n\t\t\t\t\\usepackage{amsmath}\n\t\t\t\t\\usepackage{wasysym}\n\t\t\t\t\\usepackage{amsfonts}\n\t\t\t\t\\usepackage{amssymb}\n\t\t\t\t\\usepackage{amsbsy}\n\t\t\t\t\\usepackage{mathrsfs}\n\t\t\t\t\\usepackage{upgreek}\n\t\t\t\t\\setlength{\\oddsidemargin}{-69pt}\n\t\t\t\t\\begin{document}$$G\\,=\\,(V,E)$$\\end{document} is called almost bipartite if \\documentclass[12pt]{minimal}\n\t\t\t\t\\usepackage{amsmath}\n\t\t\t\t\\usepackage{wasysym}\n\t\t\t\t\\usepackage{amsfonts}\n\t\t\t\t\\usepackage{amssymb}\n\t\t\t\t\\usepackage{amsbsy}\n\t\t\t\t\\usepackage{mathrsfs}\n\t\t\t\t\\usepackage{upgreek}\n\t\t\t\t\\setlength{\\oddsidemargin}{-69pt}\n\t\t\t\t\\begin{document}$$G$$\\end{document} is not bipartite, but there exists a vertex \\documentclass[12pt]{minimal}\n\t\t\t\t\\usepackage{amsmath}\n\t\t\t\t\\usepackage{wasysym}\n\t\t\t\t\\usepackage{amsfonts}\n\t\t\t\t\\usepackage{amssymb}\n\t\t\t\t\\usepackage{amsbsy}\n\t\t\t\t\\usepackage{mathrsfs}\n\t\t\t\t\\usepackage{upgreek}\n\t\t\t\t\\setlength{\\oddsidemargin}{-69pt}\n\t\t\t\t\\begin{document}$$v\\in V$$\\end{document} such that \\documentclass[12pt]{minimal}\n\t\t\t\t\\usepackage{amsmath}\n\t\t\t\t\\usepackage{wasysym}\n\t\t\t\t\\usepackage{amsfonts}\n\t\t\t\t\\usepackage{amssymb}\n\t\t\t\t\\usepackage{amsbsy}\n\t\t\t\t\\usepackage{mathrsfs}\n\t\t\t\t\\usepackage{upgreek}\n\t\t\t\t\\setlength{\\oddsidemargin}{-69pt}\n\t\t\t\t\\begin{document}$$G-\\{v\\}$$\\end{document} is bipartite. We consider the problem of testing if \\documentclass[12pt]{minimal}\n\t\t\t\t\\usepackage{amsmath}\n\t\t\t\t\\usepackage{wasysym}\n\t\t\t\t\\usepackage{amsfonts}\n\t\t\t\t\\usepackage{amssymb}\n\t\t\t\t\\usepackage{amsbsy}\n\t\t\t\t\\usepackage{mathrsfs}\n\t\t\t\t\\usepackage{upgreek}\n\t\t\t\t\\setlength{\\oddsidemargin}{-69pt}\n\t\t\t\t\\begin{document}$$G$$\\end{document} is almost bipartite or not.This problem arises from the study on the \\documentclass[12pt]{minimal}\n\t\t\t\t\\usepackage{amsmath}\n\t\t\t\t\\usepackage{wasysym}\n\t\t\t\t\\usepackage{amsfonts}\n\t\t\t\t\\usepackage{amssymb}\n\t\t\t\t\\usepackage{amsbsy}\n\t\t\t\t\\usepackage{mathrsfs}\n\t\t\t\t\\usepackage{upgreek}\n\t\t\t\t\\setlength{\\oddsidemargin}{-69pt}\n\t\t\t\t\\begin{document}$$k$$\\end{document}-arch layout problem. It is known that, given a graph \\documentclass[12pt]{minimal}\n\t\t\t\t\\usepackage{amsmath}\n\t\t\t\t\\usepackage{wasysym}\n\t\t\t\t\\usepackage{amsfonts}\n\t\t\t\t\\usepackage{amssymb}\n\t\t\t\t\\usepackage{amsbsy}\n\t\t\t\t\\usepackage{mathrsfs}\n\t\t\t\t\\usepackage{upgreek}\n\t\t\t\t\\setlength{\\oddsidemargin}{-69pt}\n\t\t\t\t\\begin{document}$$G$$\\end{document} and an integer \\documentclass[12pt]{minimal}\n\t\t\t\t\\usepackage{amsmath}\n\t\t\t\t\\usepackage{wasysym}\n\t\t\t\t\\usepackage{amsfonts}\n\t\t\t\t\\usepackage{amssymb}\n\t\t\t\t\\usepackage{amsbsy}\n\t\t\t\t\\usepackage{mathrsfs}\n\t\t\t\t\\usepackage{upgreek}\n\t\t\t\t\\setlength{\\oddsidemargin}{-69pt}\n\t\t\t\t\\begin{document}$$k\\ge 2$$\\end{document}, it is NP-complete to determine if \\documentclass[12pt]{minimal}\n\t\t\t\t\\usepackage{amsmath}\n\t\t\t\t\\usepackage{wasysym}\n\t\t\t\t\\usepackage{amsfonts}\n\t\t\t\t\\usepackage{amssymb}\n\t\t\t\t\\usepackage{amsbsy}\n\t\t\t\t\\usepackage{mathrsfs}\n\t\t\t\t\\usepackage{upgreek}\n\t\t\t\t\\setlength{\\oddsidemargin}{-69pt}\n\t\t\t\t\\begin{document}$$G$$\\end{document} has a \\documentclass[12pt]{minimal}\n\t\t\t\t\\usepackage{amsmath}\n\t\t\t\t\\usepackage{wasysym}\n\t\t\t\t\\usepackage{amsfonts}\n\t\t\t\t\\usepackage{amssymb}\n\t\t\t\t\\usepackage{amsbsy}\n\t\t\t\t\\usepackage{mathrsfs}\n\t\t\t\t\\usepackage{upgreek}\n\t\t\t\t\\setlength{\\oddsidemargin}{-69pt}\n\t\t\t\t\\begin{document}$$k$$\\end{document}-arch layout. On the other hand, \\documentclass[12pt]{minimal}\n\t\t\t\t\\usepackage{amsmath}\n\t\t\t\t\\usepackage{wasysym}\n\t\t\t\t\\usepackage{amsfonts}\n\t\t\t\t\\usepackage{amssymb}\n\t\t\t\t\\usepackage{amsbsy}\n\t\t\t\t\\usepackage{mathrsfs}\n\t\t\t\t\\usepackage{upgreek}\n\t\t\t\t\\setlength{\\oddsidemargin}{-69pt}\n\t\t\t\t\\begin{document}$$G$$\\end{document} has a 1-arch layout if and only if \\documentclass[12pt]{minimal}\n\t\t\t\t\\usepackage{amsmath}\n\t\t\t\t\\usepackage{wasysym}\n\t\t\t\t\\usepackage{amsfonts}\n\t\t\t\t\\usepackage{amssymb}\n\t\t\t\t\\usepackage{amsbsy}\n\t\t\t\t\\usepackage{mathrsfs}\n\t\t\t\t\\usepackage{upgreek}\n\t\t\t\t\\setlength{\\oddsidemargin}{-69pt}\n\t\t\t\t\\begin{document}$$G$$\\end{document} is almost bipartite [3]. It is straightforward to test if \\documentclass[12pt]{minimal}\n\t\t\t\t\\usepackage{amsmath}\n\t\t\t\t\\usepackage{wasysym}\n\t\t\t\t\\usepackage{amsfonts}\n\t\t\t\t\\usepackage{amssymb}\n\t\t\t\t\\usepackage{amsbsy}\n\t\t\t\t\\usepackage{mathrsfs}\n\t\t\t\t\\usepackage{upgreek}\n\t\t\t\t\\setlength{\\oddsidemargin}{-69pt}\n\t\t\t\t\\begin{document}$$G$$\\end{document} is almost bipartite in \\documentclass[12pt]{minimal}\n\t\t\t\t\\usepackage{amsmath}\n\t\t\t\t\\usepackage{wasysym}\n\t\t\t\t\\usepackage{amsfonts}\n\t\t\t\t\\usepackage{amssymb}\n\t\t\t\t\\usepackage{amsbsy}\n\t\t\t\t\\usepackage{mathrsfs}\n\t\t\t\t\\usepackage{upgreek}\n\t\t\t\t\\setlength{\\oddsidemargin}{-69pt}\n\t\t\t\t\\begin{document}$$O(n(n+m))$$\\end{document} time by using depth first search.In this paper, we present a simple linear time algorithm for solving this problem. The efficiency of the algorithm is achieved by sophisticated applications of depth first search tree and the study of the structure of such graphs.",
"editor": [
{
"familyName": "Jain",
"givenName": "Rahul",
"type": "Person"
},
{
"familyName": "Jain",
"givenName": "Sanjay",
"type": "Person"
},
{
"familyName": "Stephan",
"givenName": "Frank",
"type": "Person"
}
],
"genre": "chapter",
"id": "sg:pub.10.1007/978-3-319-17142-5_15",
"inLanguage": "en",
"isAccessibleForFree": false,
"isPartOf": {
"isbn": [
"978-3-319-17141-8",
"978-3-319-17142-5"
],
"name": "Theory and Applications of Models of Computation",
"type": "Book"
},
"keywords": [
"study",
"search",
"time",
"hand",
"problem",
"first search",
"applications",
"NP",
"structure",
"trees",
"efficiency",
"algorithm",
"paper",
"sophisticated applications",
"vertices",
"graph",
"layout",
"integers",
"bipartite graphs",
"such graphs",
"time algorithm",
"linear time algorithm",
"depth first search",
"layout problem",
"search tree",
"simple linear time algorithm",
"depth first search tree",
"first search tree"
],
"name": "A Linear Time Algorithm for Determining Almost Bipartite Graphs",
"pagination": "164-176",
"productId": [
{
"name": "dimensions_id",
"type": "PropertyValue",
"value": [
"pub.1023363747"
]
},
{
"name": "doi",
"type": "PropertyValue",
"value": [
"10.1007/978-3-319-17142-5_15"
]
}
],
"publisher": {
"name": "Springer Nature",
"type": "Organisation"
},
"sameAs": [
"https://doi.org/10.1007/978-3-319-17142-5_15",
"https://app.dimensions.ai/details/publication/pub.1023363747"
],
"sdDataset": "chapters",
"sdDatePublished": "2021-11-01T18:47",
"sdPublisher": {
"name": "Springer Nature - SN SciGraph project",
"type": "Organization"
},
"sdSource": "s3://com-springernature-scigraph/baseset/20211101/entities/gbq_results/chapter/chapter_134.jsonl",
"type": "Chapter",
"url": "https://doi.org/10.1007/978-3-319-17142-5_15"
}
]

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/978-3-319-17142-5_15'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/978-3-319-17142-5_15'

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/978-3-319-17142-5_15'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/978-3-319-17142-5_15'

This table displays all metadata directly associated to this object as RDF triples.

105 TRIPLES      23 PREDICATES      53 URIs      46 LITERALS      7 BLANK NODES

Subject Predicate Object
2 anzsrc-for:0802
3 schema:author N14081df5afd64f02923cb90b1851ff6f
4 schema:datePublished 2015-04-16
5 schema:datePublishedReg 2015-04-16
6 schema:description A graph \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$G\,=\,(V,E)$$\end{document} is called almost bipartite if \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$G$$\end{document} is not bipartite, but there exists a vertex \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$v\in V$$\end{document} such that \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$G-\{v\}$$\end{document} is bipartite. We consider the problem of testing if \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$G$$\end{document} is almost bipartite or not.This problem arises from the study on the \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$k$$\end{document}-arch layout problem. It is known that, given a graph \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$G$$\end{document} and an integer \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$k\ge 2$$\end{document}, it is NP-complete to determine if \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$G$$\end{document} has a \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$k$$\end{document}-arch layout. On the other hand, \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$G$$\end{document} has a 1-arch layout if and only if \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$G$$\end{document} is almost bipartite [3]. It is straightforward to test if \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$G$$\end{document} is almost bipartite in \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$O(n(n+m))$$\end{document} time by using depth first search.In this paper, we present a simple linear time algorithm for solving this problem. The efficiency of the algorithm is achieved by sophisticated applications of depth first search tree and the study of the structure of such graphs.
7 schema:editor N91f75b0c710f495599ef63db5528fb0b
8 schema:genre chapter
9 schema:inLanguage en
10 schema:isAccessibleForFree false
11 schema:isPartOf Nb055091da99049c5bc524a1c3a946e5f
12 schema:keywords NP
13 algorithm
14 applications
15 bipartite graphs
16 depth first search
17 depth first search tree
18 efficiency
19 first search
20 first search tree
21 graph
22 hand
23 integers
24 layout
25 layout problem
26 linear time algorithm
27 paper
28 problem
29 search
30 search tree
31 simple linear time algorithm
32 sophisticated applications
33 structure
34 study
35 such graphs
36 time
37 time algorithm
38 trees
39 vertices
40 schema:name A Linear Time Algorithm for Determining Almost Bipartite Graphs
41 schema:pagination 164-176
42 schema:productId N0e9d871b94c945d88794200e12c409c6
43 Na96ce4a105d3458d8d413217b438402e
44 schema:publisher Naaa758d3c59a4dd7a5ef28aeae6ffb79
45 schema:sameAs https://app.dimensions.ai/details/publication/pub.1023363747
46 https://doi.org/10.1007/978-3-319-17142-5_15
47 schema:sdDatePublished 2021-11-01T18:47
49 schema:sdPublisher N58286c6de27e43ff8b56e03443ae8348
50 schema:url https://doi.org/10.1007/978-3-319-17142-5_15
52 sgo:sdDataset chapters
53 rdf:type schema:Chapter
54 N0e9d871b94c945d88794200e12c409c6 schema:name dimensions_id
55 schema:value pub.1023363747
56 rdf:type schema:PropertyValue
57 N14081df5afd64f02923cb90b1851ff6f rdf:first sg:person.011772764733.17
58 rdf:rest N467191e8d29a48fa8ed41272e96301c4
59 N20a0da495162484e86c173144c656d1a schema:familyName Jain
60 schema:givenName Sanjay
61 rdf:type schema:Person
62 N3e2a68fbf3944e4bbb351b09433d9fb2 rdf:first N20a0da495162484e86c173144c656d1a
64 N467191e8d29a48fa8ed41272e96301c4 rdf:first sg:person.011352641523.42
65 rdf:rest rdf:nil
66 N555946b7148d4960aca3993c6c74b5f0 schema:familyName Jain
67 schema:givenName Rahul
68 rdf:type schema:Person
69 N58286c6de27e43ff8b56e03443ae8348 schema:name Springer Nature - SN SciGraph project
70 rdf:type schema:Organization
71 N91f75b0c710f495599ef63db5528fb0b rdf:first N555946b7148d4960aca3993c6c74b5f0
72 rdf:rest N3e2a68fbf3944e4bbb351b09433d9fb2
73 Na96ce4a105d3458d8d413217b438402e schema:name doi
74 schema:value 10.1007/978-3-319-17142-5_15
75 rdf:type schema:PropertyValue
76 Naaa758d3c59a4dd7a5ef28aeae6ffb79 schema:name Springer Nature
77 rdf:type schema:Organisation
78 Nb055091da99049c5bc524a1c3a946e5f schema:isbn 978-3-319-17141-8
79 978-3-319-17142-5
80 schema:name Theory and Applications of Models of Computation
81 rdf:type schema:Book
83 rdf:rest rdf:nil
84 Ne01aaef960374a3d959c0115b58a40dd schema:familyName Stephan
85 schema:givenName Frank
86 rdf:type schema:Person
87 anzsrc-for:08 schema:inDefinedTermSet anzsrc-for:
88 schema:name Information and Computing Sciences
89 rdf:type schema:DefinedTerm
90 anzsrc-for:0802 schema:inDefinedTermSet anzsrc-for:
91 schema:name Computation Theory and Mathematics
92 rdf:type schema:DefinedTerm
93 sg:person.011352641523.42 schema:affiliation grid-institutes:grid.273335.3
94 schema:familyName He
95 schema:givenName Xin
96 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011352641523.42
97 rdf:type schema:Person
98 sg:person.011772764733.17 schema:affiliation grid-institutes:grid.273335.3
99 schema:familyName He
100 schema:givenName Dayu
101 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011772764733.17
102 rdf:type schema:Person
103 grid-institutes:grid.273335.3 schema:alternateName Department of Computer Science and Engineering, University at Buffalo, 14260, Buffalo, NY, USA
104 schema:name Department of Computer Science and Engineering, University at Buffalo, 14260, Buffalo, NY, USA
105 rdf:type schema:Organization