Absolutely Continuous Functions View Full Text


Ontology type: schema:Chapter     


Chapter Info

DATE

2015

AUTHORS

Piermarco Cannarsa , Teresa D’Aprile

ABSTRACT

Let \(f:[a,b]\rightarrow \mathbb R\) be a continuous function and let \(F:[a,b]\rightarrow \mathbb R\) be continuously differentiable.

PAGES

229-252

Book

TITLE

Introduction to Measure Theory and Functional Analysis

ISBN

978-3-319-17018-3
978-3-319-17019-0

Author Affiliations

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/978-3-319-17019-0_7

DOI

http://dx.doi.org/10.1007/978-3-319-17019-0_7

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1022924489


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "author": [
      {
        "affiliation": {
          "alternateName": "University of Rome Tor Vergata", 
          "id": "https://www.grid.ac/institutes/grid.6530.0", 
          "name": [
            "Department of Mathematics, Universit\u00e0 degli Studi di Roma \u201cTor Vergata\u201d"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Cannarsa", 
        "givenName": "Piermarco", 
        "id": "sg:person.014257010655.09", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014257010655.09"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of Rome Tor Vergata", 
          "id": "https://www.grid.ac/institutes/grid.6530.0", 
          "name": [
            "Department of Mathematics, Universit\u00e0 degli Studi di Roma \u201cTor Vergata\u201d"
          ], 
          "type": "Organization"
        }, 
        "familyName": "D\u2019Aprile", 
        "givenName": "Teresa", 
        "id": "sg:person.010325532647.72", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010325532647.72"
        ], 
        "type": "Person"
      }
    ], 
    "datePublished": "2015", 
    "datePublishedReg": "2015-01-01", 
    "description": "Let \\(f:[a,b]\\rightarrow \\mathbb R\\) be a continuous function and let \\(F:[a,b]\\rightarrow \\mathbb R\\) be continuously differentiable.", 
    "genre": "chapter", 
    "id": "sg:pub.10.1007/978-3-319-17019-0_7", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": {
      "isbn": [
        "978-3-319-17018-3", 
        "978-3-319-17019-0"
      ], 
      "name": "Introduction to Measure Theory and Functional Analysis", 
      "type": "Book"
    }, 
    "name": "Absolutely Continuous Functions", 
    "pagination": "229-252", 
    "productId": [
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/978-3-319-17019-0_7"
        ]
      }, 
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "6d3786ff517894b5bd9bb3f22dc6d426acb18a070c82dcd820f1acb9d6df94b2"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1022924489"
        ]
      }
    ], 
    "publisher": {
      "location": "Cham", 
      "name": "Springer International Publishing", 
      "type": "Organisation"
    }, 
    "sameAs": [
      "https://doi.org/10.1007/978-3-319-17019-0_7", 
      "https://app.dimensions.ai/details/publication/pub.1022924489"
    ], 
    "sdDataset": "chapters", 
    "sdDatePublished": "2019-04-15T21:44", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8693_00000039.jsonl", 
    "type": "Chapter", 
    "url": "http://link.springer.com/10.1007/978-3-319-17019-0_7"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/978-3-319-17019-0_7'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/978-3-319-17019-0_7'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/978-3-319-17019-0_7'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/978-3-319-17019-0_7'


 

This table displays all metadata directly associated to this object as RDF triples.

58 TRIPLES      20 PREDICATES      24 URIs      19 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/978-3-319-17019-0_7 schema:author Ncb79d151e07f4a729422d7b60090015f
2 schema:datePublished 2015
3 schema:datePublishedReg 2015-01-01
4 schema:description Let \(f:[a,b]\rightarrow \mathbb R\) be a continuous function and let \(F:[a,b]\rightarrow \mathbb R\) be continuously differentiable.
5 schema:genre chapter
6 schema:inLanguage en
7 schema:isAccessibleForFree false
8 schema:isPartOf N81b15c558fb04400acd298ac1d15be0e
9 schema:name Absolutely Continuous Functions
10 schema:pagination 229-252
11 schema:productId N0d5f6a41dd9547519dcb510e4a6916cc
12 N0f5ae367ecf64dcfaf45cb6d9a35dc42
13 N67eebcc52bae431d9b051e00b92c7b5a
14 schema:publisher Nea8408f14306415394643dc663f1712a
15 schema:sameAs https://app.dimensions.ai/details/publication/pub.1022924489
16 https://doi.org/10.1007/978-3-319-17019-0_7
17 schema:sdDatePublished 2019-04-15T21:44
18 schema:sdLicense https://scigraph.springernature.com/explorer/license/
19 schema:sdPublisher N0e82ad05e49848fdaaba4a190b07253a
20 schema:url http://link.springer.com/10.1007/978-3-319-17019-0_7
21 sgo:license sg:explorer/license/
22 sgo:sdDataset chapters
23 rdf:type schema:Chapter
24 N0d5f6a41dd9547519dcb510e4a6916cc schema:name dimensions_id
25 schema:value pub.1022924489
26 rdf:type schema:PropertyValue
27 N0e82ad05e49848fdaaba4a190b07253a schema:name Springer Nature - SN SciGraph project
28 rdf:type schema:Organization
29 N0f5ae367ecf64dcfaf45cb6d9a35dc42 schema:name doi
30 schema:value 10.1007/978-3-319-17019-0_7
31 rdf:type schema:PropertyValue
32 N67eebcc52bae431d9b051e00b92c7b5a schema:name readcube_id
33 schema:value 6d3786ff517894b5bd9bb3f22dc6d426acb18a070c82dcd820f1acb9d6df94b2
34 rdf:type schema:PropertyValue
35 N81b15c558fb04400acd298ac1d15be0e schema:isbn 978-3-319-17018-3
36 978-3-319-17019-0
37 schema:name Introduction to Measure Theory and Functional Analysis
38 rdf:type schema:Book
39 Ncb79d151e07f4a729422d7b60090015f rdf:first sg:person.014257010655.09
40 rdf:rest Nf8c43656634440cbb00d7e524446fd9b
41 Nea8408f14306415394643dc663f1712a schema:location Cham
42 schema:name Springer International Publishing
43 rdf:type schema:Organisation
44 Nf8c43656634440cbb00d7e524446fd9b rdf:first sg:person.010325532647.72
45 rdf:rest rdf:nil
46 sg:person.010325532647.72 schema:affiliation https://www.grid.ac/institutes/grid.6530.0
47 schema:familyName D’Aprile
48 schema:givenName Teresa
49 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010325532647.72
50 rdf:type schema:Person
51 sg:person.014257010655.09 schema:affiliation https://www.grid.ac/institutes/grid.6530.0
52 schema:familyName Cannarsa
53 schema:givenName Piermarco
54 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014257010655.09
55 rdf:type schema:Person
56 https://www.grid.ac/institutes/grid.6530.0 schema:alternateName University of Rome Tor Vergata
57 schema:name Department of Mathematics, Università degli Studi di Roma “Tor Vergata”
58 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...