Hilbert Spaces View Full Text


Ontology type: schema:Chapter     


Chapter Info

DATE

2015

AUTHORS

Piermarco Cannarsa , Teresa D’Aprile

ABSTRACT

With this chapter we begin the study of functional analysis, which represents the second main topic of this book. Just like in the first part of the book we have shown how to extend to an abstract environment fundamental analytical notions such as the integral of a real function, we now intend to explain how to generalize basic concepts from geometry and linear algebra to vector spaces with certain additional structures. We shall first examine Hilbert spaces, where the notion of orthogonal vectors can be defined thanks to the presence of a scalar product. In the next chapter, our analysis will move to the more general class of Banach spaces, where orthogonality no longer makes sense. One could go even further and consider topological vector spaces, but such a level of generality would exceed the scopes of this monograph. More... »

PAGES

133-166

Book

TITLE

Introduction to Measure Theory and Functional Analysis

ISBN

978-3-319-17018-3
978-3-319-17019-0

Author Affiliations

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/978-3-319-17019-0_5

DOI

http://dx.doi.org/10.1007/978-3-319-17019-0_5

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1004340975


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0101", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Pure Mathematics", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/01", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Mathematical Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "University of Rome Tor Vergata", 
          "id": "https://www.grid.ac/institutes/grid.6530.0", 
          "name": [
            "Department of Mathematics, Universit\u00e0 degli Studi di Roma \u201cTor Vergata\u201d"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Cannarsa", 
        "givenName": "Piermarco", 
        "id": "sg:person.014257010655.09", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014257010655.09"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of Rome Tor Vergata", 
          "id": "https://www.grid.ac/institutes/grid.6530.0", 
          "name": [
            "Department of Mathematics, Universit\u00e0 degli Studi di Roma \u201cTor Vergata\u201d"
          ], 
          "type": "Organization"
        }, 
        "familyName": "D\u2019Aprile", 
        "givenName": "Teresa", 
        "id": "sg:person.010325532647.72", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010325532647.72"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1063/1.3034115", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1057895569"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2015", 
    "datePublishedReg": "2015-01-01", 
    "description": "With this chapter we begin the study of functional analysis, which represents the second main topic of this book. Just like in the first part of the book we have shown how to extend to an abstract environment fundamental analytical notions such as the integral of a real function, we now intend to explain how to generalize basic concepts from geometry and linear algebra to vector spaces with certain additional structures. We shall first examine Hilbert spaces, where the notion of orthogonal vectors can be defined thanks to the presence of a scalar product. In the next chapter, our analysis will move to the more general class of Banach spaces, where orthogonality no longer makes sense. One could go even further and consider topological vector spaces, but such a level of generality would exceed the scopes of this monograph.", 
    "genre": "chapter", 
    "id": "sg:pub.10.1007/978-3-319-17019-0_5", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": {
      "isbn": [
        "978-3-319-17018-3", 
        "978-3-319-17019-0"
      ], 
      "name": "Introduction to Measure Theory and Functional Analysis", 
      "type": "Book"
    }, 
    "name": "Hilbert Spaces", 
    "pagination": "133-166", 
    "productId": [
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/978-3-319-17019-0_5"
        ]
      }, 
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "14af13afe5d8ef246d1c9ae0aef1764774e5da79bd6157401384d4e8498a5ae4"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1004340975"
        ]
      }
    ], 
    "publisher": {
      "location": "Cham", 
      "name": "Springer International Publishing", 
      "type": "Organisation"
    }, 
    "sameAs": [
      "https://doi.org/10.1007/978-3-319-17019-0_5", 
      "https://app.dimensions.ai/details/publication/pub.1004340975"
    ], 
    "sdDataset": "chapters", 
    "sdDatePublished": "2019-04-15T19:50", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8687_00000007.jsonl", 
    "type": "Chapter", 
    "url": "http://link.springer.com/10.1007/978-3-319-17019-0_5"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/978-3-319-17019-0_5'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/978-3-319-17019-0_5'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/978-3-319-17019-0_5'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/978-3-319-17019-0_5'


 

This table displays all metadata directly associated to this object as RDF triples.

69 TRIPLES      22 PREDICATES      27 URIs      19 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/978-3-319-17019-0_5 schema:about anzsrc-for:01
2 anzsrc-for:0101
3 schema:author Nfac48a88753a4488bcfdc69fb62fce52
4 schema:citation https://doi.org/10.1063/1.3034115
5 schema:datePublished 2015
6 schema:datePublishedReg 2015-01-01
7 schema:description With this chapter we begin the study of functional analysis, which represents the second main topic of this book. Just like in the first part of the book we have shown how to extend to an abstract environment fundamental analytical notions such as the integral of a real function, we now intend to explain how to generalize basic concepts from geometry and linear algebra to vector spaces with certain additional structures. We shall first examine Hilbert spaces, where the notion of orthogonal vectors can be defined thanks to the presence of a scalar product. In the next chapter, our analysis will move to the more general class of Banach spaces, where orthogonality no longer makes sense. One could go even further and consider topological vector spaces, but such a level of generality would exceed the scopes of this monograph.
8 schema:genre chapter
9 schema:inLanguage en
10 schema:isAccessibleForFree false
11 schema:isPartOf Nea49a490b6d94a66b2ab1e562da43248
12 schema:name Hilbert Spaces
13 schema:pagination 133-166
14 schema:productId N006e41b2a8fd4c62a3f8407372182380
15 N7005a3fe42794600b7de4b06e0cf110e
16 Nf6ca1ff56c5f4254bd4608fc45973c1e
17 schema:publisher N8851ca410d6a4a44a415b26d085a10f9
18 schema:sameAs https://app.dimensions.ai/details/publication/pub.1004340975
19 https://doi.org/10.1007/978-3-319-17019-0_5
20 schema:sdDatePublished 2019-04-15T19:50
21 schema:sdLicense https://scigraph.springernature.com/explorer/license/
22 schema:sdPublisher Nc07dab302abc45de928274130125257b
23 schema:url http://link.springer.com/10.1007/978-3-319-17019-0_5
24 sgo:license sg:explorer/license/
25 sgo:sdDataset chapters
26 rdf:type schema:Chapter
27 N006e41b2a8fd4c62a3f8407372182380 schema:name dimensions_id
28 schema:value pub.1004340975
29 rdf:type schema:PropertyValue
30 N7005a3fe42794600b7de4b06e0cf110e schema:name doi
31 schema:value 10.1007/978-3-319-17019-0_5
32 rdf:type schema:PropertyValue
33 N8851ca410d6a4a44a415b26d085a10f9 schema:location Cham
34 schema:name Springer International Publishing
35 rdf:type schema:Organisation
36 Nc07dab302abc45de928274130125257b schema:name Springer Nature - SN SciGraph project
37 rdf:type schema:Organization
38 Nccae8f085bd64323afbdc1250eb7af98 rdf:first sg:person.010325532647.72
39 rdf:rest rdf:nil
40 Nea49a490b6d94a66b2ab1e562da43248 schema:isbn 978-3-319-17018-3
41 978-3-319-17019-0
42 schema:name Introduction to Measure Theory and Functional Analysis
43 rdf:type schema:Book
44 Nf6ca1ff56c5f4254bd4608fc45973c1e schema:name readcube_id
45 schema:value 14af13afe5d8ef246d1c9ae0aef1764774e5da79bd6157401384d4e8498a5ae4
46 rdf:type schema:PropertyValue
47 Nfac48a88753a4488bcfdc69fb62fce52 rdf:first sg:person.014257010655.09
48 rdf:rest Nccae8f085bd64323afbdc1250eb7af98
49 anzsrc-for:01 schema:inDefinedTermSet anzsrc-for:
50 schema:name Mathematical Sciences
51 rdf:type schema:DefinedTerm
52 anzsrc-for:0101 schema:inDefinedTermSet anzsrc-for:
53 schema:name Pure Mathematics
54 rdf:type schema:DefinedTerm
55 sg:person.010325532647.72 schema:affiliation https://www.grid.ac/institutes/grid.6530.0
56 schema:familyName D’Aprile
57 schema:givenName Teresa
58 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010325532647.72
59 rdf:type schema:Person
60 sg:person.014257010655.09 schema:affiliation https://www.grid.ac/institutes/grid.6530.0
61 schema:familyName Cannarsa
62 schema:givenName Piermarco
63 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014257010655.09
64 rdf:type schema:Person
65 https://doi.org/10.1063/1.3034115 schema:sameAs https://app.dimensions.ai/details/publication/pub.1057895569
66 rdf:type schema:CreativeWork
67 https://www.grid.ac/institutes/grid.6530.0 schema:alternateName University of Rome Tor Vergata
68 schema:name Department of Mathematics, Università degli Studi di Roma “Tor Vergata”
69 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...