Product Measures View Full Text


Ontology type: schema:Chapter     


Chapter Info

DATE

2015

AUTHORS

Piermarco Cannarsa , Teresa D’Aprile

ABSTRACT

On the Cartesian product of two measure spaces one can construct a measure—hence, an integral—which is directly connected with the measure on each factor. Then, the natural problem that arises is how to reduce a double (or multiple) integral to the computation of two (or more) simple integrals. Such a question plays a crucial role in Lebesgue integration. More... »

PAGES

107-130

Book

TITLE

Introduction to Measure Theory and Functional Analysis

ISBN

978-3-319-17018-3
978-3-319-17019-0

Author Affiliations

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/978-3-319-17019-0_4

DOI

http://dx.doi.org/10.1007/978-3-319-17019-0_4

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1031053962


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0101", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Pure Mathematics", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/01", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Mathematical Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "University of Rome Tor Vergata", 
          "id": "https://www.grid.ac/institutes/grid.6530.0", 
          "name": [
            "Department of Mathematics, Universit\u00e0 degli Studi di Roma \u201cTor Vergata\u201d"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Cannarsa", 
        "givenName": "Piermarco", 
        "id": "sg:person.014257010655.09", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014257010655.09"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of Rome Tor Vergata", 
          "id": "https://www.grid.ac/institutes/grid.6530.0", 
          "name": [
            "Department of Mathematics, Universit\u00e0 degli Studi di Roma \u201cTor Vergata\u201d"
          ], 
          "type": "Organization"
        }, 
        "familyName": "D\u2019Aprile", 
        "givenName": "Teresa", 
        "id": "sg:person.010325532647.72", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010325532647.72"
        ], 
        "type": "Person"
      }
    ], 
    "datePublished": "2015", 
    "datePublishedReg": "2015-01-01", 
    "description": "On the Cartesian product of two measure spaces one can construct a measure\u2014hence, an integral\u2014which is directly connected with the measure on each factor. Then, the natural problem that arises is how to reduce a double (or multiple) integral to the computation of two (or more) simple integrals. Such a question plays a crucial role in Lebesgue integration.", 
    "genre": "chapter", 
    "id": "sg:pub.10.1007/978-3-319-17019-0_4", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": {
      "isbn": [
        "978-3-319-17018-3", 
        "978-3-319-17019-0"
      ], 
      "name": "Introduction to Measure Theory and Functional Analysis", 
      "type": "Book"
    }, 
    "name": "Product Measures", 
    "pagination": "107-130", 
    "productId": [
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/978-3-319-17019-0_4"
        ]
      }, 
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "93f0676ca4f1cdfd1bfaaefa4b3788e628f78a46667d9987619238bf6d91068f"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1031053962"
        ]
      }
    ], 
    "publisher": {
      "location": "Cham", 
      "name": "Springer International Publishing", 
      "type": "Organisation"
    }, 
    "sameAs": [
      "https://doi.org/10.1007/978-3-319-17019-0_4", 
      "https://app.dimensions.ai/details/publication/pub.1031053962"
    ], 
    "sdDataset": "chapters", 
    "sdDatePublished": "2019-04-15T16:04", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8675_00000053.jsonl", 
    "type": "Chapter", 
    "url": "http://link.springer.com/10.1007/978-3-319-17019-0_4"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/978-3-319-17019-0_4'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/978-3-319-17019-0_4'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/978-3-319-17019-0_4'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/978-3-319-17019-0_4'


 

This table displays all metadata directly associated to this object as RDF triples.

66 TRIPLES      21 PREDICATES      26 URIs      19 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/978-3-319-17019-0_4 schema:about anzsrc-for:01
2 anzsrc-for:0101
3 schema:author Nd0cb189043cd4e34822b165da558da8b
4 schema:datePublished 2015
5 schema:datePublishedReg 2015-01-01
6 schema:description On the Cartesian product of two measure spaces one can construct a measure—hence, an integral—which is directly connected with the measure on each factor. Then, the natural problem that arises is how to reduce a double (or multiple) integral to the computation of two (or more) simple integrals. Such a question plays a crucial role in Lebesgue integration.
7 schema:genre chapter
8 schema:inLanguage en
9 schema:isAccessibleForFree false
10 schema:isPartOf Nca0d6cef212143e0ae73146783c2634c
11 schema:name Product Measures
12 schema:pagination 107-130
13 schema:productId N7715afd101974eee88fec3a188ec4ff0
14 N9999cefa254a43d1bb1ee2fdd2d088de
15 Nac084f4f5a4b47739f8fca144b675d3c
16 schema:publisher Nddb3abfba67c41349368380dbdb966fc
17 schema:sameAs https://app.dimensions.ai/details/publication/pub.1031053962
18 https://doi.org/10.1007/978-3-319-17019-0_4
19 schema:sdDatePublished 2019-04-15T16:04
20 schema:sdLicense https://scigraph.springernature.com/explorer/license/
21 schema:sdPublisher N308cbe64259441628542485418059a9d
22 schema:url http://link.springer.com/10.1007/978-3-319-17019-0_4
23 sgo:license sg:explorer/license/
24 sgo:sdDataset chapters
25 rdf:type schema:Chapter
26 N308cbe64259441628542485418059a9d schema:name Springer Nature - SN SciGraph project
27 rdf:type schema:Organization
28 N7715afd101974eee88fec3a188ec4ff0 schema:name doi
29 schema:value 10.1007/978-3-319-17019-0_4
30 rdf:type schema:PropertyValue
31 N9999cefa254a43d1bb1ee2fdd2d088de schema:name readcube_id
32 schema:value 93f0676ca4f1cdfd1bfaaefa4b3788e628f78a46667d9987619238bf6d91068f
33 rdf:type schema:PropertyValue
34 Nac084f4f5a4b47739f8fca144b675d3c schema:name dimensions_id
35 schema:value pub.1031053962
36 rdf:type schema:PropertyValue
37 Nca0d6cef212143e0ae73146783c2634c schema:isbn 978-3-319-17018-3
38 978-3-319-17019-0
39 schema:name Introduction to Measure Theory and Functional Analysis
40 rdf:type schema:Book
41 Nd0cb189043cd4e34822b165da558da8b rdf:first sg:person.014257010655.09
42 rdf:rest Nf6595c6576c5496b81afccb15d3b7534
43 Nddb3abfba67c41349368380dbdb966fc schema:location Cham
44 schema:name Springer International Publishing
45 rdf:type schema:Organisation
46 Nf6595c6576c5496b81afccb15d3b7534 rdf:first sg:person.010325532647.72
47 rdf:rest rdf:nil
48 anzsrc-for:01 schema:inDefinedTermSet anzsrc-for:
49 schema:name Mathematical Sciences
50 rdf:type schema:DefinedTerm
51 anzsrc-for:0101 schema:inDefinedTermSet anzsrc-for:
52 schema:name Pure Mathematics
53 rdf:type schema:DefinedTerm
54 sg:person.010325532647.72 schema:affiliation https://www.grid.ac/institutes/grid.6530.0
55 schema:familyName D’Aprile
56 schema:givenName Teresa
57 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010325532647.72
58 rdf:type schema:Person
59 sg:person.014257010655.09 schema:affiliation https://www.grid.ac/institutes/grid.6530.0
60 schema:familyName Cannarsa
61 schema:givenName Piermarco
62 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014257010655.09
63 rdf:type schema:Person
64 https://www.grid.ac/institutes/grid.6530.0 schema:alternateName University of Rome Tor Vergata
65 schema:name Department of Mathematics, Università degli Studi di Roma “Tor Vergata”
66 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...