$$L^p$$ L p Spaces View Full Text


Ontology type: schema:Chapter     


Chapter Info

DATE

2015

AUTHORS

Piermarco Cannarsa , Teresa D’Aprile

ABSTRACT

As we observed in Chap. 2, the family of all \(\mu \)-summable functions on a measure space \((X, \fancyscript{E}, \mu )\) can be given the structure of a linear space.

PAGES

81-106

Book

TITLE

Introduction to Measure Theory and Functional Analysis

ISBN

978-3-319-17018-3
978-3-319-17019-0

Author Affiliations

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/978-3-319-17019-0_3

DOI

http://dx.doi.org/10.1007/978-3-319-17019-0_3

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1027458590


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "author": [
      {
        "affiliation": {
          "alternateName": "University of Rome Tor Vergata", 
          "id": "https://www.grid.ac/institutes/grid.6530.0", 
          "name": [
            "Department of Mathematics, Universit\u00e0 degli Studi di Roma \u201cTor Vergata\u201d"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Cannarsa", 
        "givenName": "Piermarco", 
        "id": "sg:person.014257010655.09", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014257010655.09"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of Rome Tor Vergata", 
          "id": "https://www.grid.ac/institutes/grid.6530.0", 
          "name": [
            "Department of Mathematics, Universit\u00e0 degli Studi di Roma \u201cTor Vergata\u201d"
          ], 
          "type": "Organization"
        }, 
        "familyName": "D\u2019Aprile", 
        "givenName": "Teresa", 
        "id": "sg:person.010325532647.72", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010325532647.72"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1007/978-1-4684-9440-2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1029413732", 
          "https://doi.org/10.1007/978-1-4684-9440-2"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-1-4684-9440-2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1029413732", 
          "https://doi.org/10.1007/978-1-4684-9440-2"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2015", 
    "datePublishedReg": "2015-01-01", 
    "description": "As we observed in Chap. 2, the family of all \\(\\mu \\)-summable functions on a measure space \\((X, \\fancyscript{E}, \\mu )\\) can be given the structure of a linear space.", 
    "genre": "chapter", 
    "id": "sg:pub.10.1007/978-3-319-17019-0_3", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": {
      "isbn": [
        "978-3-319-17018-3", 
        "978-3-319-17019-0"
      ], 
      "name": "Introduction to Measure Theory and Functional Analysis", 
      "type": "Book"
    }, 
    "name": "$$L^p$$ L p Spaces", 
    "pagination": "81-106", 
    "productId": [
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/978-3-319-17019-0_3"
        ]
      }, 
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "82cdb48692fa61fdaba8e75fcf74a7c688c0c34603006052264c446fe3eaa8c3"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1027458590"
        ]
      }
    ], 
    "publisher": {
      "location": "Cham", 
      "name": "Springer International Publishing", 
      "type": "Organisation"
    }, 
    "sameAs": [
      "https://doi.org/10.1007/978-3-319-17019-0_3", 
      "https://app.dimensions.ai/details/publication/pub.1027458590"
    ], 
    "sdDataset": "chapters", 
    "sdDatePublished": "2019-04-15T13:28", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8664_00000260.jsonl", 
    "type": "Chapter", 
    "url": "http://link.springer.com/10.1007/978-3-319-17019-0_3"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/978-3-319-17019-0_3'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/978-3-319-17019-0_3'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/978-3-319-17019-0_3'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/978-3-319-17019-0_3'


 

This table displays all metadata directly associated to this object as RDF triples.

62 TRIPLES      21 PREDICATES      25 URIs      19 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/978-3-319-17019-0_3 schema:author Nafb754d0f2ce489598994797d3b16ff8
2 schema:citation sg:pub.10.1007/978-1-4684-9440-2
3 schema:datePublished 2015
4 schema:datePublishedReg 2015-01-01
5 schema:description As we observed in Chap. 2, the family of all \(\mu \)-summable functions on a measure space \((X, \fancyscript{E}, \mu )\) can be given the structure of a linear space.
6 schema:genre chapter
7 schema:inLanguage en
8 schema:isAccessibleForFree false
9 schema:isPartOf N0e5f7ad7b91e48d79c867eb0946070f9
10 schema:name $$L^p$$ L p Spaces
11 schema:pagination 81-106
12 schema:productId N168afa4fb0944e6b8eff85bf70ce96e1
13 N3bd4e3e8c73f40e2b9ae136eea73d147
14 N5af96e62390546f2adc1ce4e7cdd86af
15 schema:publisher Ndb0ffe4504be4d4ba8a6e6ecdfde0662
16 schema:sameAs https://app.dimensions.ai/details/publication/pub.1027458590
17 https://doi.org/10.1007/978-3-319-17019-0_3
18 schema:sdDatePublished 2019-04-15T13:28
19 schema:sdLicense https://scigraph.springernature.com/explorer/license/
20 schema:sdPublisher Nf73d8198bf0b4caf839a2d2d2b783241
21 schema:url http://link.springer.com/10.1007/978-3-319-17019-0_3
22 sgo:license sg:explorer/license/
23 sgo:sdDataset chapters
24 rdf:type schema:Chapter
25 N0e5f7ad7b91e48d79c867eb0946070f9 schema:isbn 978-3-319-17018-3
26 978-3-319-17019-0
27 schema:name Introduction to Measure Theory and Functional Analysis
28 rdf:type schema:Book
29 N168afa4fb0944e6b8eff85bf70ce96e1 schema:name doi
30 schema:value 10.1007/978-3-319-17019-0_3
31 rdf:type schema:PropertyValue
32 N3bd4e3e8c73f40e2b9ae136eea73d147 schema:name dimensions_id
33 schema:value pub.1027458590
34 rdf:type schema:PropertyValue
35 N41df0ac9494d4cba83d355a05b3f506e rdf:first sg:person.010325532647.72
36 rdf:rest rdf:nil
37 N5af96e62390546f2adc1ce4e7cdd86af schema:name readcube_id
38 schema:value 82cdb48692fa61fdaba8e75fcf74a7c688c0c34603006052264c446fe3eaa8c3
39 rdf:type schema:PropertyValue
40 Nafb754d0f2ce489598994797d3b16ff8 rdf:first sg:person.014257010655.09
41 rdf:rest N41df0ac9494d4cba83d355a05b3f506e
42 Ndb0ffe4504be4d4ba8a6e6ecdfde0662 schema:location Cham
43 schema:name Springer International Publishing
44 rdf:type schema:Organisation
45 Nf73d8198bf0b4caf839a2d2d2b783241 schema:name Springer Nature - SN SciGraph project
46 rdf:type schema:Organization
47 sg:person.010325532647.72 schema:affiliation https://www.grid.ac/institutes/grid.6530.0
48 schema:familyName D’Aprile
49 schema:givenName Teresa
50 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010325532647.72
51 rdf:type schema:Person
52 sg:person.014257010655.09 schema:affiliation https://www.grid.ac/institutes/grid.6530.0
53 schema:familyName Cannarsa
54 schema:givenName Piermarco
55 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014257010655.09
56 rdf:type schema:Person
57 sg:pub.10.1007/978-1-4684-9440-2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1029413732
58 https://doi.org/10.1007/978-1-4684-9440-2
59 rdf:type schema:CreativeWork
60 https://www.grid.ac/institutes/grid.6530.0 schema:alternateName University of Rome Tor Vergata
61 schema:name Department of Mathematics, Università degli Studi di Roma “Tor Vergata”
62 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...