2015
AUTHORSPiermarco Cannarsa , Teresa D’Aprile
ABSTRACTThe class of measurable, or Borel, functions \(f:X\rightarrow \mathbb {R}\cup \{\pm \infty \}\) on a measurable space \((X,\fancyscript{E}, \mu )\) can be defined in natural way using the notion of measurable sets. Such a class is stable under linear operations, product, and pointwise convergence. Moreover, if \(X\) is a topological space and \(\fancyscript{E}\) is the Borel \(\sigma \)-algebra, then every continuous function is Borel. In particular, for a Radon measure \(\mu \) on \(\mathbb {R}^N\), all Borel functions \(f:\mathbb {R}^N\rightarrow \mathbb {R}\cup \{\pm \infty \}\) preserve the regularity properties of \(\mu \). A very useful consequence of this is the fact that measurable function can be approximated with continuous functions. More... »
PAGES37-80
Introduction to Measure Theory and Functional Analysis
ISBN
978-3-319-17018-3
978-3-319-17019-0
http://scigraph.springernature.com/pub.10.1007/978-3-319-17019-0_2
DOIhttp://dx.doi.org/10.1007/978-3-319-17019-0_2
DIMENSIONShttps://app.dimensions.ai/details/publication/pub.1001786818
JSON-LD is the canonical representation for SciGraph data.
TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT
[
{
"@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json",
"about": [
{
"id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0101",
"inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/",
"name": "Pure Mathematics",
"type": "DefinedTerm"
},
{
"id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/01",
"inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/",
"name": "Mathematical Sciences",
"type": "DefinedTerm"
}
],
"author": [
{
"affiliation": {
"alternateName": "University of Rome Tor Vergata",
"id": "https://www.grid.ac/institutes/grid.6530.0",
"name": [
"Department of Mathematics, Universit\u00e0 degli Studi di Roma \u201cTor Vergata\u201d"
],
"type": "Organization"
},
"familyName": "Cannarsa",
"givenName": "Piermarco",
"id": "sg:person.014257010655.09",
"sameAs": [
"https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014257010655.09"
],
"type": "Person"
},
{
"affiliation": {
"alternateName": "University of Rome Tor Vergata",
"id": "https://www.grid.ac/institutes/grid.6530.0",
"name": [
"Department of Mathematics, Universit\u00e0 degli Studi di Roma \u201cTor Vergata\u201d"
],
"type": "Organization"
},
"familyName": "D\u2019Aprile",
"givenName": "Teresa",
"id": "sg:person.010325532647.72",
"sameAs": [
"https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010325532647.72"
],
"type": "Person"
}
],
"datePublished": "2015",
"datePublishedReg": "2015-01-01",
"description": "The class of measurable, or Borel, functions \\(f:X\\rightarrow \\mathbb {R}\\cup \\{\\pm \\infty \\}\\) on a measurable space \\((X,\\fancyscript{E}, \\mu )\\) can be defined in natural way using the notion of measurable sets. Such a class is stable under linear operations, product, and pointwise convergence. Moreover, if \\(X\\) is a topological space and \\(\\fancyscript{E}\\) is the Borel \\(\\sigma \\)-algebra, then every continuous function is Borel. In particular, for a Radon measure \\(\\mu \\) on \\(\\mathbb {R}^N\\), all Borel functions \\(f:\\mathbb {R}^N\\rightarrow \\mathbb {R}\\cup \\{\\pm \\infty \\}\\) preserve the regularity properties of \\(\\mu \\). A very useful consequence of this is the fact that measurable function can be approximated with continuous functions.",
"genre": "chapter",
"id": "sg:pub.10.1007/978-3-319-17019-0_2",
"inLanguage": [
"en"
],
"isAccessibleForFree": false,
"isPartOf": {
"isbn": [
"978-3-319-17018-3",
"978-3-319-17019-0"
],
"name": "Introduction to Measure Theory and Functional Analysis",
"type": "Book"
},
"name": "Integration",
"pagination": "37-80",
"productId": [
{
"name": "doi",
"type": "PropertyValue",
"value": [
"10.1007/978-3-319-17019-0_2"
]
},
{
"name": "readcube_id",
"type": "PropertyValue",
"value": [
"088299443eabbb93591e239f5a7b15fe13bf0c41a981357792223fd80aadba14"
]
},
{
"name": "dimensions_id",
"type": "PropertyValue",
"value": [
"pub.1001786818"
]
}
],
"publisher": {
"location": "Cham",
"name": "Springer International Publishing",
"type": "Organisation"
},
"sameAs": [
"https://doi.org/10.1007/978-3-319-17019-0_2",
"https://app.dimensions.ai/details/publication/pub.1001786818"
],
"sdDataset": "chapters",
"sdDatePublished": "2019-04-15T14:08",
"sdLicense": "https://scigraph.springernature.com/explorer/license/",
"sdPublisher": {
"name": "Springer Nature - SN SciGraph project",
"type": "Organization"
},
"sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8669_00000003.jsonl",
"type": "Chapter",
"url": "http://link.springer.com/10.1007/978-3-319-17019-0_2"
}
]
Download the RDF metadata as: json-ld nt turtle xml License info
JSON-LD is a popular format for linked data which is fully compatible with JSON.
curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/978-3-319-17019-0_2'
N-Triples is a line-based linked data format ideal for batch operations.
curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/978-3-319-17019-0_2'
Turtle is a human-readable linked data format.
curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/978-3-319-17019-0_2'
RDF/XML is a standard XML format for linked data.
curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/978-3-319-17019-0_2'
This table displays all metadata directly associated to this object as RDF triples.
66 TRIPLES
21 PREDICATES
26 URIs
19 LITERALS
7 BLANK NODES