Global Motion Estimation from Relative Measurements in the Presence of Outliers View Full Text


Ontology type: schema:Chapter     


Chapter Info

DATE

2015

AUTHORS

Guillaume Bourmaud , Rémi Mégret , Audrey Giremus , Yannick Berthoumieu

ABSTRACT

This work addresses the generic problem of global motion estimation (homographies, camera poses, orientations, etc.) from relative measurements in the presence of outliers. We propose an efficient and robust framework to tackle this problem when motion parameters belong to a Lie group manifold. It exploits the graph structure of the problem as well as the geometry of the manifold. It is based on the recently proposed iterated extended Kalman filter on matrix Lie groups. Our algorithm iteratively samples a minimum spanning tree of the graph, applies Kalman filtering along this spanning tree and updates the graph structure, until convergence. The graph structure update is based on computing loop errors in the graph and applying a proposed statistical inlier test on Lie groups. This is done efficiently, taking advantage of the covariance matrix of the estimation errors produced by the filter. The proposed formalism is applied on both synthetic and real data, for a camera pose registration problem, an automatic image mosaicking problem and a partial 3D reconstruction merging problem. In these applications, the framework presented in this paper efficiently recovers the global motions while the state of the art algorithms fail due to the presence of a large proportion of outliers. More... »

PAGES

366-381

References to SciGraph publications

  • 2013-07. Rotation Averaging in INTERNATIONAL JOURNAL OF COMPUTER VISION
  • 2007-08. Automatic Panoramic Image Stitching using Invariant Features in INTERNATIONAL JOURNAL OF COMPUTER VISION
  • 2006. Robustness in Motion Averaging in COMPUTER VISION – ACCV 2006
  • 2012. Stochastic Models, Information Theory, and Lie Groups, Volume 2, Analytic Methods and Modern Applications in NONE
  • Book

    TITLE

    Computer Vision -- ACCV 2014

    ISBN

    978-3-319-16813-5
    978-3-319-16814-2

    From Grant

    Identifiers

    URI

    http://scigraph.springernature.com/pub.10.1007/978-3-319-16814-2_24

    DOI

    http://dx.doi.org/10.1007/978-3-319-16814-2_24

    DIMENSIONS

    https://app.dimensions.ai/details/publication/pub.1049158738


    Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
    Incoming Citations Browse incoming citations for this publication using opencitations.net

    JSON-LD is the canonical representation for SciGraph data.

    TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

    [
      {
        "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
        "about": [
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0801", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Artificial Intelligence and Image Processing", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/08", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Information and Computing Sciences", 
            "type": "DefinedTerm"
          }
        ], 
        "author": [
          {
            "affiliation": {
              "alternateName": "Laboratoire de l'Integration du Materiau au Systeme", 
              "id": "https://www.grid.ac/institutes/grid.462974.a", 
              "name": [
                "University Bordeaux, IMS, UMR 5218, 33400\u00a0Talence, France"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Bourmaud", 
            "givenName": "Guillaume", 
            "id": "sg:person.012356273125.13", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012356273125.13"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Laboratoire de l'Integration du Materiau au Systeme", 
              "id": "https://www.grid.ac/institutes/grid.462974.a", 
              "name": [
                "University Bordeaux, IMS, UMR 5218, 33400\u00a0Talence, France"
              ], 
              "type": "Organization"
            }, 
            "familyName": "M\u00e9gret", 
            "givenName": "R\u00e9mi", 
            "id": "sg:person.015455063145.04", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015455063145.04"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Laboratoire de l'Integration du Materiau au Systeme", 
              "id": "https://www.grid.ac/institutes/grid.462974.a", 
              "name": [
                "University Bordeaux, IMS, UMR 5218, 33400\u00a0Talence, France"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Giremus", 
            "givenName": "Audrey", 
            "id": "sg:person.016305433245.69", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016305433245.69"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Laboratoire de l'Integration du Materiau au Systeme", 
              "id": "https://www.grid.ac/institutes/grid.462974.a", 
              "name": [
                "University Bordeaux, IMS, UMR 5218, 33400\u00a0Talence, France"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Berthoumieu", 
            "givenName": "Yannick", 
            "id": "sg:person.010636166221.26", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010636166221.26"
            ], 
            "type": "Person"
          }
        ], 
        "citation": [
          {
            "id": "sg:pub.10.1007/s11263-012-0601-0", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1002072243", 
              "https://doi.org/10.1007/s11263-012-0601-0"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/11612704_46", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1004668037", 
              "https://doi.org/10.1007/11612704_46"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/11612704_46", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1004668037", 
              "https://doi.org/10.1007/11612704_46"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.acra.2008.07.004", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1007049451"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1177/0278364913479413", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1010143034"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1177/0278364913479413", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1010143034"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/978-0-8176-4944-9", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1019019054", 
              "https://doi.org/10.1007/978-0-8176-4944-9"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/978-0-8176-4944-9", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1019019054", 
              "https://doi.org/10.1007/978-0-8176-4944-9"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1177/0278364907080252", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1025233631"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1177/0278364907080252", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1025233631"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1177/0278364913498910", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1026813880"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1177/0278364913498910", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1026813880"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1145/358669.358692", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1033921345"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s11263-006-0002-3", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1049205751", 
              "https://doi.org/10.1007/s11263-006-0002-3"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1093/imaiai/iat005", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1050492664"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1109/tro.2006.878978", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1061784677"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1109/tro.2014.2298059", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1061785611"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1137/090767777", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1062856598"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1214/aoms/1177703732", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1064400228"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.18409/jas.v2i1.11", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1068637767"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1109/iccv.2013.66", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1093178849"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1109/cvpr.2010.5539801", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1093329705"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1109/iccv.2011.6126517", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1093666770"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1109/cvpr.2011.5995549", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1094009493"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1109/cdc.2013.6760038", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1094469157"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1109/iccv.2013.69", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1094470680"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1109/icip.2014.7025680", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1094532800"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1109/iccvw.2011.6130252", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1094692617"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1109/iccv.2013.70", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1094707525"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1109/robot.2009.5152384", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1094969844"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1109/iros.2006.282313", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1095031997"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1109/iccv.2013.403", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1095177392"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1109/cvpr.2011.5995745", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1095178720"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1109/iros.2012.6385590", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1095634979"
            ], 
            "type": "CreativeWork"
          }
        ], 
        "datePublished": "2015", 
        "datePublishedReg": "2015-01-01", 
        "description": "This work addresses the generic problem of global motion estimation (homographies, camera poses, orientations, etc.) from relative measurements in the presence of outliers. We propose an efficient and robust framework to tackle this problem when motion parameters belong to a Lie group manifold. It exploits the graph structure of the problem as well as the geometry of the manifold. It is based on the recently proposed iterated extended Kalman filter on matrix Lie groups. Our algorithm iteratively samples a minimum spanning tree of the graph, applies Kalman filtering along this spanning tree and updates the graph structure, until convergence. The graph structure update is based on computing loop errors in the graph and applying a proposed statistical inlier test on Lie groups. This is done efficiently, taking advantage of the covariance matrix of the estimation errors produced by the filter. The proposed formalism is applied on both synthetic and real data, for a camera pose registration problem, an automatic image mosaicking problem and a partial 3D reconstruction merging problem. In these applications, the framework presented in this paper efficiently recovers the global motions while the state of the art algorithms fail due to the presence of a large proportion of outliers.", 
        "editor": [
          {
            "familyName": "Cremers", 
            "givenName": "Daniel", 
            "type": "Person"
          }, 
          {
            "familyName": "Reid", 
            "givenName": "Ian", 
            "type": "Person"
          }, 
          {
            "familyName": "Saito", 
            "givenName": "Hideo", 
            "type": "Person"
          }, 
          {
            "familyName": "Yang", 
            "givenName": "Ming-Hsuan", 
            "type": "Person"
          }
        ], 
        "genre": "chapter", 
        "id": "sg:pub.10.1007/978-3-319-16814-2_24", 
        "inLanguage": [
          "en"
        ], 
        "isAccessibleForFree": false, 
        "isFundedItemOf": [
          {
            "id": "sg:grant.3782453", 
            "type": "MonetaryGrant"
          }
        ], 
        "isPartOf": {
          "isbn": [
            "978-3-319-16813-5", 
            "978-3-319-16814-2"
          ], 
          "name": "Computer Vision -- ACCV 2014", 
          "type": "Book"
        }, 
        "name": "Global Motion Estimation from Relative Measurements in the Presence of Outliers", 
        "pagination": "366-381", 
        "productId": [
          {
            "name": "doi", 
            "type": "PropertyValue", 
            "value": [
              "10.1007/978-3-319-16814-2_24"
            ]
          }, 
          {
            "name": "readcube_id", 
            "type": "PropertyValue", 
            "value": [
              "ea2f1dc2be5c65775e95bb028be1b95da7465767a16eb9a378ad8a0e784904a4"
            ]
          }, 
          {
            "name": "dimensions_id", 
            "type": "PropertyValue", 
            "value": [
              "pub.1049158738"
            ]
          }
        ], 
        "publisher": {
          "location": "Cham", 
          "name": "Springer International Publishing", 
          "type": "Organisation"
        }, 
        "sameAs": [
          "https://doi.org/10.1007/978-3-319-16814-2_24", 
          "https://app.dimensions.ai/details/publication/pub.1049158738"
        ], 
        "sdDataset": "chapters", 
        "sdDatePublished": "2019-04-15T21:04", 
        "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
        "sdPublisher": {
          "name": "Springer Nature - SN SciGraph project", 
          "type": "Organization"
        }, 
        "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8690_00000273.jsonl", 
        "type": "Chapter", 
        "url": "http://link.springer.com/10.1007/978-3-319-16814-2_24"
      }
    ]
     

    Download the RDF metadata as:  json-ld nt turtle xml License info

    HOW TO GET THIS DATA PROGRAMMATICALLY:

    JSON-LD is a popular format for linked data which is fully compatible with JSON.

    curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/978-3-319-16814-2_24'

    N-Triples is a line-based linked data format ideal for batch operations.

    curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/978-3-319-16814-2_24'

    Turtle is a human-readable linked data format.

    curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/978-3-319-16814-2_24'

    RDF/XML is a standard XML format for linked data.

    curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/978-3-319-16814-2_24'


     

    This table displays all metadata directly associated to this object as RDF triples.

    194 TRIPLES      23 PREDICATES      56 URIs      20 LITERALS      8 BLANK NODES

    Subject Predicate Object
    1 sg:pub.10.1007/978-3-319-16814-2_24 schema:about anzsrc-for:08
    2 anzsrc-for:0801
    3 schema:author N7e19b50cb29149768001660cc54ab9fe
    4 schema:citation sg:pub.10.1007/11612704_46
    5 sg:pub.10.1007/978-0-8176-4944-9
    6 sg:pub.10.1007/s11263-006-0002-3
    7 sg:pub.10.1007/s11263-012-0601-0
    8 https://doi.org/10.1016/j.acra.2008.07.004
    9 https://doi.org/10.1093/imaiai/iat005
    10 https://doi.org/10.1109/cdc.2013.6760038
    11 https://doi.org/10.1109/cvpr.2010.5539801
    12 https://doi.org/10.1109/cvpr.2011.5995549
    13 https://doi.org/10.1109/cvpr.2011.5995745
    14 https://doi.org/10.1109/iccv.2011.6126517
    15 https://doi.org/10.1109/iccv.2013.403
    16 https://doi.org/10.1109/iccv.2013.66
    17 https://doi.org/10.1109/iccv.2013.69
    18 https://doi.org/10.1109/iccv.2013.70
    19 https://doi.org/10.1109/iccvw.2011.6130252
    20 https://doi.org/10.1109/icip.2014.7025680
    21 https://doi.org/10.1109/iros.2006.282313
    22 https://doi.org/10.1109/iros.2012.6385590
    23 https://doi.org/10.1109/robot.2009.5152384
    24 https://doi.org/10.1109/tro.2006.878978
    25 https://doi.org/10.1109/tro.2014.2298059
    26 https://doi.org/10.1137/090767777
    27 https://doi.org/10.1145/358669.358692
    28 https://doi.org/10.1177/0278364907080252
    29 https://doi.org/10.1177/0278364913479413
    30 https://doi.org/10.1177/0278364913498910
    31 https://doi.org/10.1214/aoms/1177703732
    32 https://doi.org/10.18409/jas.v2i1.11
    33 schema:datePublished 2015
    34 schema:datePublishedReg 2015-01-01
    35 schema:description This work addresses the generic problem of global motion estimation (homographies, camera poses, orientations, etc.) from relative measurements in the presence of outliers. We propose an efficient and robust framework to tackle this problem when motion parameters belong to a Lie group manifold. It exploits the graph structure of the problem as well as the geometry of the manifold. It is based on the recently proposed iterated extended Kalman filter on matrix Lie groups. Our algorithm iteratively samples a minimum spanning tree of the graph, applies Kalman filtering along this spanning tree and updates the graph structure, until convergence. The graph structure update is based on computing loop errors in the graph and applying a proposed statistical inlier test on Lie groups. This is done efficiently, taking advantage of the covariance matrix of the estimation errors produced by the filter. The proposed formalism is applied on both synthetic and real data, for a camera pose registration problem, an automatic image mosaicking problem and a partial 3D reconstruction merging problem. In these applications, the framework presented in this paper efficiently recovers the global motions while the state of the art algorithms fail due to the presence of a large proportion of outliers.
    36 schema:editor N8f42ac837434487dad7beff734339295
    37 schema:genre chapter
    38 schema:inLanguage en
    39 schema:isAccessibleForFree false
    40 schema:isPartOf N853a265e1ccf4fb798750a1550477110
    41 schema:name Global Motion Estimation from Relative Measurements in the Presence of Outliers
    42 schema:pagination 366-381
    43 schema:productId N098e6495741e4dafa585eff5b05c0526
    44 N36a0aa5995fa4aa19f251c009e23c278
    45 N71e64c983e6c466e83e4fa69e4111288
    46 schema:publisher N66f2061e5d1a4b449f17c90a3886ecb0
    47 schema:sameAs https://app.dimensions.ai/details/publication/pub.1049158738
    48 https://doi.org/10.1007/978-3-319-16814-2_24
    49 schema:sdDatePublished 2019-04-15T21:04
    50 schema:sdLicense https://scigraph.springernature.com/explorer/license/
    51 schema:sdPublisher Nf9baecced27d4e048aa289a01d14765b
    52 schema:url http://link.springer.com/10.1007/978-3-319-16814-2_24
    53 sgo:license sg:explorer/license/
    54 sgo:sdDataset chapters
    55 rdf:type schema:Chapter
    56 N098e6495741e4dafa585eff5b05c0526 schema:name readcube_id
    57 schema:value ea2f1dc2be5c65775e95bb028be1b95da7465767a16eb9a378ad8a0e784904a4
    58 rdf:type schema:PropertyValue
    59 N100bde194e904132913a7521df5b3adc schema:familyName Cremers
    60 schema:givenName Daniel
    61 rdf:type schema:Person
    62 N1790cbe0afee411c976b218fdc75925c rdf:first N34c68bfa1c854110a9ad2c93fd83d3e6
    63 rdf:rest Nd4a73b87189a443fa90802a4346dfab9
    64 N27ab1d5413f94ed5933780ff7a8b8f5d rdf:first sg:person.010636166221.26
    65 rdf:rest rdf:nil
    66 N34c68bfa1c854110a9ad2c93fd83d3e6 schema:familyName Saito
    67 schema:givenName Hideo
    68 rdf:type schema:Person
    69 N36a0aa5995fa4aa19f251c009e23c278 schema:name doi
    70 schema:value 10.1007/978-3-319-16814-2_24
    71 rdf:type schema:PropertyValue
    72 N66f2061e5d1a4b449f17c90a3886ecb0 schema:location Cham
    73 schema:name Springer International Publishing
    74 rdf:type schema:Organisation
    75 N71e64c983e6c466e83e4fa69e4111288 schema:name dimensions_id
    76 schema:value pub.1049158738
    77 rdf:type schema:PropertyValue
    78 N73500a7af3ac4f88a6d0934da69be0ab schema:familyName Reid
    79 schema:givenName Ian
    80 rdf:type schema:Person
    81 N7e19b50cb29149768001660cc54ab9fe rdf:first sg:person.012356273125.13
    82 rdf:rest N8cb16d8bfff9482891c3dea2720e69fa
    83 N853a265e1ccf4fb798750a1550477110 schema:isbn 978-3-319-16813-5
    84 978-3-319-16814-2
    85 schema:name Computer Vision -- ACCV 2014
    86 rdf:type schema:Book
    87 N8cb16d8bfff9482891c3dea2720e69fa rdf:first sg:person.015455063145.04
    88 rdf:rest Nbe569269cdd04d6ba5abc09d4aebe405
    89 N8f42ac837434487dad7beff734339295 rdf:first N100bde194e904132913a7521df5b3adc
    90 rdf:rest Na00fe3a892eb46cfbec8566afb94adbd
    91 Na00fe3a892eb46cfbec8566afb94adbd rdf:first N73500a7af3ac4f88a6d0934da69be0ab
    92 rdf:rest N1790cbe0afee411c976b218fdc75925c
    93 Nba2c1ed760fa48119cc5e4da90a0fde5 schema:familyName Yang
    94 schema:givenName Ming-Hsuan
    95 rdf:type schema:Person
    96 Nbe569269cdd04d6ba5abc09d4aebe405 rdf:first sg:person.016305433245.69
    97 rdf:rest N27ab1d5413f94ed5933780ff7a8b8f5d
    98 Nd4a73b87189a443fa90802a4346dfab9 rdf:first Nba2c1ed760fa48119cc5e4da90a0fde5
    99 rdf:rest rdf:nil
    100 Nf9baecced27d4e048aa289a01d14765b schema:name Springer Nature - SN SciGraph project
    101 rdf:type schema:Organization
    102 anzsrc-for:08 schema:inDefinedTermSet anzsrc-for:
    103 schema:name Information and Computing Sciences
    104 rdf:type schema:DefinedTerm
    105 anzsrc-for:0801 schema:inDefinedTermSet anzsrc-for:
    106 schema:name Artificial Intelligence and Image Processing
    107 rdf:type schema:DefinedTerm
    108 sg:grant.3782453 http://pending.schema.org/fundedItem sg:pub.10.1007/978-3-319-16814-2_24
    109 rdf:type schema:MonetaryGrant
    110 sg:person.010636166221.26 schema:affiliation https://www.grid.ac/institutes/grid.462974.a
    111 schema:familyName Berthoumieu
    112 schema:givenName Yannick
    113 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010636166221.26
    114 rdf:type schema:Person
    115 sg:person.012356273125.13 schema:affiliation https://www.grid.ac/institutes/grid.462974.a
    116 schema:familyName Bourmaud
    117 schema:givenName Guillaume
    118 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012356273125.13
    119 rdf:type schema:Person
    120 sg:person.015455063145.04 schema:affiliation https://www.grid.ac/institutes/grid.462974.a
    121 schema:familyName Mégret
    122 schema:givenName Rémi
    123 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015455063145.04
    124 rdf:type schema:Person
    125 sg:person.016305433245.69 schema:affiliation https://www.grid.ac/institutes/grid.462974.a
    126 schema:familyName Giremus
    127 schema:givenName Audrey
    128 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016305433245.69
    129 rdf:type schema:Person
    130 sg:pub.10.1007/11612704_46 schema:sameAs https://app.dimensions.ai/details/publication/pub.1004668037
    131 https://doi.org/10.1007/11612704_46
    132 rdf:type schema:CreativeWork
    133 sg:pub.10.1007/978-0-8176-4944-9 schema:sameAs https://app.dimensions.ai/details/publication/pub.1019019054
    134 https://doi.org/10.1007/978-0-8176-4944-9
    135 rdf:type schema:CreativeWork
    136 sg:pub.10.1007/s11263-006-0002-3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1049205751
    137 https://doi.org/10.1007/s11263-006-0002-3
    138 rdf:type schema:CreativeWork
    139 sg:pub.10.1007/s11263-012-0601-0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1002072243
    140 https://doi.org/10.1007/s11263-012-0601-0
    141 rdf:type schema:CreativeWork
    142 https://doi.org/10.1016/j.acra.2008.07.004 schema:sameAs https://app.dimensions.ai/details/publication/pub.1007049451
    143 rdf:type schema:CreativeWork
    144 https://doi.org/10.1093/imaiai/iat005 schema:sameAs https://app.dimensions.ai/details/publication/pub.1050492664
    145 rdf:type schema:CreativeWork
    146 https://doi.org/10.1109/cdc.2013.6760038 schema:sameAs https://app.dimensions.ai/details/publication/pub.1094469157
    147 rdf:type schema:CreativeWork
    148 https://doi.org/10.1109/cvpr.2010.5539801 schema:sameAs https://app.dimensions.ai/details/publication/pub.1093329705
    149 rdf:type schema:CreativeWork
    150 https://doi.org/10.1109/cvpr.2011.5995549 schema:sameAs https://app.dimensions.ai/details/publication/pub.1094009493
    151 rdf:type schema:CreativeWork
    152 https://doi.org/10.1109/cvpr.2011.5995745 schema:sameAs https://app.dimensions.ai/details/publication/pub.1095178720
    153 rdf:type schema:CreativeWork
    154 https://doi.org/10.1109/iccv.2011.6126517 schema:sameAs https://app.dimensions.ai/details/publication/pub.1093666770
    155 rdf:type schema:CreativeWork
    156 https://doi.org/10.1109/iccv.2013.403 schema:sameAs https://app.dimensions.ai/details/publication/pub.1095177392
    157 rdf:type schema:CreativeWork
    158 https://doi.org/10.1109/iccv.2013.66 schema:sameAs https://app.dimensions.ai/details/publication/pub.1093178849
    159 rdf:type schema:CreativeWork
    160 https://doi.org/10.1109/iccv.2013.69 schema:sameAs https://app.dimensions.ai/details/publication/pub.1094470680
    161 rdf:type schema:CreativeWork
    162 https://doi.org/10.1109/iccv.2013.70 schema:sameAs https://app.dimensions.ai/details/publication/pub.1094707525
    163 rdf:type schema:CreativeWork
    164 https://doi.org/10.1109/iccvw.2011.6130252 schema:sameAs https://app.dimensions.ai/details/publication/pub.1094692617
    165 rdf:type schema:CreativeWork
    166 https://doi.org/10.1109/icip.2014.7025680 schema:sameAs https://app.dimensions.ai/details/publication/pub.1094532800
    167 rdf:type schema:CreativeWork
    168 https://doi.org/10.1109/iros.2006.282313 schema:sameAs https://app.dimensions.ai/details/publication/pub.1095031997
    169 rdf:type schema:CreativeWork
    170 https://doi.org/10.1109/iros.2012.6385590 schema:sameAs https://app.dimensions.ai/details/publication/pub.1095634979
    171 rdf:type schema:CreativeWork
    172 https://doi.org/10.1109/robot.2009.5152384 schema:sameAs https://app.dimensions.ai/details/publication/pub.1094969844
    173 rdf:type schema:CreativeWork
    174 https://doi.org/10.1109/tro.2006.878978 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061784677
    175 rdf:type schema:CreativeWork
    176 https://doi.org/10.1109/tro.2014.2298059 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061785611
    177 rdf:type schema:CreativeWork
    178 https://doi.org/10.1137/090767777 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062856598
    179 rdf:type schema:CreativeWork
    180 https://doi.org/10.1145/358669.358692 schema:sameAs https://app.dimensions.ai/details/publication/pub.1033921345
    181 rdf:type schema:CreativeWork
    182 https://doi.org/10.1177/0278364907080252 schema:sameAs https://app.dimensions.ai/details/publication/pub.1025233631
    183 rdf:type schema:CreativeWork
    184 https://doi.org/10.1177/0278364913479413 schema:sameAs https://app.dimensions.ai/details/publication/pub.1010143034
    185 rdf:type schema:CreativeWork
    186 https://doi.org/10.1177/0278364913498910 schema:sameAs https://app.dimensions.ai/details/publication/pub.1026813880
    187 rdf:type schema:CreativeWork
    188 https://doi.org/10.1214/aoms/1177703732 schema:sameAs https://app.dimensions.ai/details/publication/pub.1064400228
    189 rdf:type schema:CreativeWork
    190 https://doi.org/10.18409/jas.v2i1.11 schema:sameAs https://app.dimensions.ai/details/publication/pub.1068637767
    191 rdf:type schema:CreativeWork
    192 https://www.grid.ac/institutes/grid.462974.a schema:alternateName Laboratoire de l'Integration du Materiau au Systeme
    193 schema:name University Bordeaux, IMS, UMR 5218, 33400 Talence, France
    194 rdf:type schema:Organization
     




    Preview window. Press ESC to close (or click here)


    ...