An Efficient Nonlinear Regression Approach for Genome-Wide Detection of Marginal and Interacting Genetic Variations View Full Text


Ontology type: schema:Chapter     


Chapter Info

DATE

2015-03-26

AUTHORS

Seunghak Lee , Aurélie Lozano , Prabhanjan Kambadur , Eric P. Xing

ABSTRACT

Genome-wide association studies have revealed individual genetic variants associated with phenotypic traits such as disease risk and gene expressions. However, detecting pairwise interaction effects of genetic variants on traits still remains a challenge due to a large number of combinations of variants (\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\sim 10^{11}$$\end{document} SNP pairs in the human genome), and relatively small sample sizes (typically \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$< 10^{4}$$\end{document}). Despite recent breakthroughs in detecting interaction effects, there are still several open problems, including: (1) how to quickly process a large number of SNP pairs, (2) how to distinguish between true signals and SNPs/SNP pairs merely correlated with true signals, (3) how to detect non-linear associations between SNP pairs and traits given small sample sizes, and (4) how to control false positives? In this paper, we present a unified framework, called SPHINX, which addresses the aforementioned challenges. We first propose a piecewise linear model for interaction detection because it is simple enough to estimate model parameters given small sample sizes but complex enough to capture non-linear interaction effects. Then, based on the piecewise linear model, we introduce randomized group lasso under stability selection, and a screening algorithm to address the statistical and computational challenges mentioned above. In our experiments, we first demonstrate that SPHINX achieves better power than existing methods for interaction detection under false positive control. We further applied SPHINX to late-onset Alzheimer’s disease dataset, and report 16 SNPs and 17 SNP pairs associated with gene traits. We also present a highly scalable implementation of our screening algorithm which can screen \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\sim $$\end{document} 118 billion candidates of associations on a 60-node cluster in \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$<{}5.5$$\end{document} hours. SPHINX is available at http://www.cs.cmu.edu/\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\sim $$\end{document}seunghak/SPHINX/. More... »

PAGES

167-187

Book

TITLE

Research in Computational Molecular Biology

ISBN

978-3-319-16705-3
978-3-319-16706-0

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/978-3-319-16706-0_17

DOI

http://dx.doi.org/10.1007/978-3-319-16706-0_17

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1029065214


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/06", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Biological Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0604", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Genetics", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "School of Computer Science, Carnegie Mellon University, Pittsburgh, PA, USA", 
          "id": "http://www.grid.ac/institutes/grid.147455.6", 
          "name": [
            "School of Computer Science, Carnegie Mellon University, Pittsburgh, PA, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Lee", 
        "givenName": "Seunghak", 
        "id": "sg:person.0652142515.58", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0652142515.58"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "IBM T. J. Watson Research Center, New York, NY, USA", 
          "id": "http://www.grid.ac/institutes/grid.481554.9", 
          "name": [
            "IBM T. J. Watson Research Center, New York, NY, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Lozano", 
        "givenName": "Aur\u00e9lie", 
        "id": "sg:person.01150255232.89", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01150255232.89"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Bloomberg L.P., New York, NY, USA", 
          "id": "http://www.grid.ac/institutes/None", 
          "name": [
            "Bloomberg L.P., New York, NY, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Kambadur", 
        "givenName": "Prabhanjan", 
        "id": "sg:person.012701547127.33", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012701547127.33"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "School of Computer Science, Carnegie Mellon University, Pittsburgh, PA, USA", 
          "id": "http://www.grid.ac/institutes/grid.147455.6", 
          "name": [
            "School of Computer Science, Carnegie Mellon University, Pittsburgh, PA, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Xing", 
        "givenName": "Eric P.", 
        "id": "sg:person.01253676062.48", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01253676062.48"
        ], 
        "type": "Person"
      }
    ], 
    "datePublished": "2015-03-26", 
    "datePublishedReg": "2015-03-26", 
    "description": "Genome-wide association studies have revealed individual genetic variants associated with phenotypic traits such as disease risk and gene expressions. However, detecting pairwise interaction effects of genetic variants on traits still remains a challenge due to a large number of combinations of variants (\\documentclass[12pt]{minimal}\n\t\t\t\t\\usepackage{amsmath}\n\t\t\t\t\\usepackage{wasysym}\n\t\t\t\t\\usepackage{amsfonts}\n\t\t\t\t\\usepackage{amssymb}\n\t\t\t\t\\usepackage{amsbsy}\n\t\t\t\t\\usepackage{mathrsfs}\n\t\t\t\t\\usepackage{upgreek}\n\t\t\t\t\\setlength{\\oddsidemargin}{-69pt}\n\t\t\t\t\\begin{document}$$\\sim 10^{11}$$\\end{document} SNP pairs in the human genome), and relatively small sample sizes (typically \\documentclass[12pt]{minimal}\n\t\t\t\t\\usepackage{amsmath}\n\t\t\t\t\\usepackage{wasysym}\n\t\t\t\t\\usepackage{amsfonts}\n\t\t\t\t\\usepackage{amssymb}\n\t\t\t\t\\usepackage{amsbsy}\n\t\t\t\t\\usepackage{mathrsfs}\n\t\t\t\t\\usepackage{upgreek}\n\t\t\t\t\\setlength{\\oddsidemargin}{-69pt}\n\t\t\t\t\\begin{document}$$< 10^{4}$$\\end{document}). Despite recent breakthroughs in detecting interaction effects, there are still several open problems, including: (1) how to quickly process a large number of SNP pairs, (2) how to distinguish between true signals and SNPs/SNP pairs merely correlated with true signals, (3) how to detect non-linear associations between SNP pairs and traits given small sample sizes, and (4) how to control false positives? In this paper, we present a unified framework, called SPHINX, which addresses the aforementioned challenges. We first propose a piecewise linear model for interaction detection because it is simple enough to estimate model parameters given small sample sizes but complex enough to capture non-linear interaction effects. Then, based on the piecewise linear model, we introduce randomized group lasso under stability selection, and a screening algorithm to address the statistical and computational challenges mentioned above. In our experiments, we first demonstrate that SPHINX achieves better power than existing methods for interaction detection under false positive control. We further applied SPHINX to late-onset Alzheimer\u2019s disease dataset, and report 16 SNPs and 17 SNP pairs associated with gene traits. We also present a highly scalable implementation of our screening algorithm which can screen \\documentclass[12pt]{minimal}\n\t\t\t\t\\usepackage{amsmath}\n\t\t\t\t\\usepackage{wasysym}\n\t\t\t\t\\usepackage{amsfonts}\n\t\t\t\t\\usepackage{amssymb}\n\t\t\t\t\\usepackage{amsbsy}\n\t\t\t\t\\usepackage{mathrsfs}\n\t\t\t\t\\usepackage{upgreek}\n\t\t\t\t\\setlength{\\oddsidemargin}{-69pt}\n\t\t\t\t\\begin{document}$$\\sim $$\\end{document} 118 billion candidates of associations on a 60-node cluster in \\documentclass[12pt]{minimal}\n\t\t\t\t\\usepackage{amsmath}\n\t\t\t\t\\usepackage{wasysym}\n\t\t\t\t\\usepackage{amsfonts}\n\t\t\t\t\\usepackage{amssymb}\n\t\t\t\t\\usepackage{amsbsy}\n\t\t\t\t\\usepackage{mathrsfs}\n\t\t\t\t\\usepackage{upgreek}\n\t\t\t\t\\setlength{\\oddsidemargin}{-69pt}\n\t\t\t\t\\begin{document}$$<{}5.5$$\\end{document} hours. SPHINX is available at http://www.cs.cmu.edu/\\documentclass[12pt]{minimal}\n\t\t\t\t\\usepackage{amsmath}\n\t\t\t\t\\usepackage{wasysym}\n\t\t\t\t\\usepackage{amsfonts}\n\t\t\t\t\\usepackage{amssymb}\n\t\t\t\t\\usepackage{amsbsy}\n\t\t\t\t\\usepackage{mathrsfs}\n\t\t\t\t\\usepackage{upgreek}\n\t\t\t\t\\setlength{\\oddsidemargin}{-69pt}\n\t\t\t\t\\begin{document}$$\\sim $$\\end{document}seunghak/SPHINX/.", 
    "editor": [
      {
        "familyName": "Przytycka", 
        "givenName": "Teresa M.", 
        "type": "Person"
      }
    ], 
    "genre": "chapter", 
    "id": "sg:pub.10.1007/978-3-319-16706-0_17", 
    "inLanguage": "en", 
    "isAccessibleForFree": false, 
    "isPartOf": {
      "isbn": [
        "978-3-319-16705-3", 
        "978-3-319-16706-0"
      ], 
      "name": "Research in Computational Molecular Biology", 
      "type": "Book"
    }, 
    "keywords": [
      "SNP pairs", 
      "genome-wide detection", 
      "genome-wide association studies", 
      "genetic variants", 
      "gene traits", 
      "phenotypic traits", 
      "individual genetic variants", 
      "genetic variation", 
      "gene expression", 
      "association studies", 
      "traits", 
      "Late-Onset Alzheimer\u2019s Disease dataset", 
      "Alzheimer's disease dataset", 
      "recent breakthroughs", 
      "large number", 
      "variants", 
      "false positive control", 
      "sphinx", 
      "SNPs", 
      "expression", 
      "disease dataset", 
      "pairs", 
      "interaction detection", 
      "positive control", 
      "disease risk", 
      "pairwise interaction effects", 
      "signals", 
      "stability selection", 
      "selection", 
      "size", 
      "computational challenges", 
      "clusters", 
      "variation", 
      "number", 
      "association", 
      "false positives", 
      "linear model", 
      "effect", 
      "true signal", 
      "small sample size", 
      "sample size", 
      "candidates", 
      "good power", 
      "detection", 
      "interaction effects", 
      "breakthrough", 
      "combination", 
      "experiments", 
      "control", 
      "study", 
      "challenges", 
      "datasets", 
      "positives", 
      "model", 
      "nonlinear regression approach", 
      "approach", 
      "regression approach", 
      "Lasso", 
      "group lasso", 
      "hours", 
      "method", 
      "non-linear association", 
      "parameters", 
      "risk", 
      "model parameters", 
      "framework", 
      "scalable implementation", 
      "unified framework", 
      "screening algorithm", 
      "power", 
      "problem", 
      "open problem", 
      "aforementioned challenges", 
      "algorithm", 
      "piecewise linear model", 
      "implementation", 
      "paper", 
      "marginals", 
      "non-linear interaction effects", 
      "SNPs/SNP pairs", 
      "candidates of associations", 
      "SPHINX/.", 
      "Efficient Nonlinear Regression Approach"
    ], 
    "name": "An Efficient Nonlinear Regression Approach for Genome-Wide Detection of Marginal and Interacting Genetic Variations", 
    "pagination": "167-187", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1029065214"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/978-3-319-16706-0_17"
        ]
      }
    ], 
    "publisher": {
      "name": "Springer Nature", 
      "type": "Organisation"
    }, 
    "sameAs": [
      "https://doi.org/10.1007/978-3-319-16706-0_17", 
      "https://app.dimensions.ai/details/publication/pub.1029065214"
    ], 
    "sdDataset": "chapters", 
    "sdDatePublished": "2021-12-01T20:05", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20211201/entities/gbq_results/chapter/chapter_322.jsonl", 
    "type": "Chapter", 
    "url": "https://doi.org/10.1007/978-3-319-16706-0_17"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/978-3-319-16706-0_17'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/978-3-319-16706-0_17'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/978-3-319-16706-0_17'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/978-3-319-16706-0_17'


 

This table displays all metadata directly associated to this object as RDF triples.

170 TRIPLES      23 PREDICATES      108 URIs      101 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/978-3-319-16706-0_17 schema:about anzsrc-for:06
2 anzsrc-for:0604
3 schema:author N980f42173b284d6281b4394ba987c5bc
4 schema:datePublished 2015-03-26
5 schema:datePublishedReg 2015-03-26
6 schema:description Genome-wide association studies have revealed individual genetic variants associated with phenotypic traits such as disease risk and gene expressions. However, detecting pairwise interaction effects of genetic variants on traits still remains a challenge due to a large number of combinations of variants (\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\sim 10^{11}$$\end{document} SNP pairs in the human genome), and relatively small sample sizes (typically \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$< 10^{4}$$\end{document}). Despite recent breakthroughs in detecting interaction effects, there are still several open problems, including: (1) how to quickly process a large number of SNP pairs, (2) how to distinguish between true signals and SNPs/SNP pairs merely correlated with true signals, (3) how to detect non-linear associations between SNP pairs and traits given small sample sizes, and (4) how to control false positives? In this paper, we present a unified framework, called SPHINX, which addresses the aforementioned challenges. We first propose a piecewise linear model for interaction detection because it is simple enough to estimate model parameters given small sample sizes but complex enough to capture non-linear interaction effects. Then, based on the piecewise linear model, we introduce randomized group lasso under stability selection, and a screening algorithm to address the statistical and computational challenges mentioned above. In our experiments, we first demonstrate that SPHINX achieves better power than existing methods for interaction detection under false positive control. We further applied SPHINX to late-onset Alzheimer’s disease dataset, and report 16 SNPs and 17 SNP pairs associated with gene traits. We also present a highly scalable implementation of our screening algorithm which can screen \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\sim $$\end{document} 118 billion candidates of associations on a 60-node cluster in \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$<{}5.5$$\end{document} hours. SPHINX is available at http://www.cs.cmu.edu/\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\sim $$\end{document}seunghak/SPHINX/.
7 schema:editor N4e4c937e4e2740f4a4cd6c3ad07996c8
8 schema:genre chapter
9 schema:inLanguage en
10 schema:isAccessibleForFree false
11 schema:isPartOf Ndf41515302a848abbf3acf5077efa701
12 schema:keywords Alzheimer's disease dataset
13 Efficient Nonlinear Regression Approach
14 Lasso
15 Late-Onset Alzheimer’s Disease dataset
16 SNP pairs
17 SNPs
18 SNPs/SNP pairs
19 SPHINX/.
20 aforementioned challenges
21 algorithm
22 approach
23 association
24 association studies
25 breakthrough
26 candidates
27 candidates of associations
28 challenges
29 clusters
30 combination
31 computational challenges
32 control
33 datasets
34 detection
35 disease dataset
36 disease risk
37 effect
38 experiments
39 expression
40 false positive control
41 false positives
42 framework
43 gene expression
44 gene traits
45 genetic variants
46 genetic variation
47 genome-wide association studies
48 genome-wide detection
49 good power
50 group lasso
51 hours
52 implementation
53 individual genetic variants
54 interaction detection
55 interaction effects
56 large number
57 linear model
58 marginals
59 method
60 model
61 model parameters
62 non-linear association
63 non-linear interaction effects
64 nonlinear regression approach
65 number
66 open problem
67 pairs
68 pairwise interaction effects
69 paper
70 parameters
71 phenotypic traits
72 piecewise linear model
73 positive control
74 positives
75 power
76 problem
77 recent breakthroughs
78 regression approach
79 risk
80 sample size
81 scalable implementation
82 screening algorithm
83 selection
84 signals
85 size
86 small sample size
87 sphinx
88 stability selection
89 study
90 traits
91 true signal
92 unified framework
93 variants
94 variation
95 schema:name An Efficient Nonlinear Regression Approach for Genome-Wide Detection of Marginal and Interacting Genetic Variations
96 schema:pagination 167-187
97 schema:productId N9bb61004af9f43f384ca35a169632367
98 Nd67eb03bc4f848448df7fd9b853d94d6
99 schema:publisher N14135a6ba40f4d8094705b39ea30fc7b
100 schema:sameAs https://app.dimensions.ai/details/publication/pub.1029065214
101 https://doi.org/10.1007/978-3-319-16706-0_17
102 schema:sdDatePublished 2021-12-01T20:05
103 schema:sdLicense https://scigraph.springernature.com/explorer/license/
104 schema:sdPublisher N75bcd369da614c82a2cb92b9d18e0e32
105 schema:url https://doi.org/10.1007/978-3-319-16706-0_17
106 sgo:license sg:explorer/license/
107 sgo:sdDataset chapters
108 rdf:type schema:Chapter
109 N02392204b30142e5abc788781380748b rdf:first sg:person.01253676062.48
110 rdf:rest rdf:nil
111 N14135a6ba40f4d8094705b39ea30fc7b schema:name Springer Nature
112 rdf:type schema:Organisation
113 N4e4c937e4e2740f4a4cd6c3ad07996c8 rdf:first Na4c2758232ae43769c58b138fba52ac7
114 rdf:rest rdf:nil
115 N71078b45486b448c9e78ced675054095 rdf:first sg:person.012701547127.33
116 rdf:rest N02392204b30142e5abc788781380748b
117 N75bcd369da614c82a2cb92b9d18e0e32 schema:name Springer Nature - SN SciGraph project
118 rdf:type schema:Organization
119 N980f42173b284d6281b4394ba987c5bc rdf:first sg:person.0652142515.58
120 rdf:rest Na059cfcf70b647e08677d398bcfe07ce
121 N9bb61004af9f43f384ca35a169632367 schema:name dimensions_id
122 schema:value pub.1029065214
123 rdf:type schema:PropertyValue
124 Na059cfcf70b647e08677d398bcfe07ce rdf:first sg:person.01150255232.89
125 rdf:rest N71078b45486b448c9e78ced675054095
126 Na4c2758232ae43769c58b138fba52ac7 schema:familyName Przytycka
127 schema:givenName Teresa M.
128 rdf:type schema:Person
129 Nd67eb03bc4f848448df7fd9b853d94d6 schema:name doi
130 schema:value 10.1007/978-3-319-16706-0_17
131 rdf:type schema:PropertyValue
132 Ndf41515302a848abbf3acf5077efa701 schema:isbn 978-3-319-16705-3
133 978-3-319-16706-0
134 schema:name Research in Computational Molecular Biology
135 rdf:type schema:Book
136 anzsrc-for:06 schema:inDefinedTermSet anzsrc-for:
137 schema:name Biological Sciences
138 rdf:type schema:DefinedTerm
139 anzsrc-for:0604 schema:inDefinedTermSet anzsrc-for:
140 schema:name Genetics
141 rdf:type schema:DefinedTerm
142 sg:person.01150255232.89 schema:affiliation grid-institutes:grid.481554.9
143 schema:familyName Lozano
144 schema:givenName Aurélie
145 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01150255232.89
146 rdf:type schema:Person
147 sg:person.01253676062.48 schema:affiliation grid-institutes:grid.147455.6
148 schema:familyName Xing
149 schema:givenName Eric P.
150 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01253676062.48
151 rdf:type schema:Person
152 sg:person.012701547127.33 schema:affiliation grid-institutes:None
153 schema:familyName Kambadur
154 schema:givenName Prabhanjan
155 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012701547127.33
156 rdf:type schema:Person
157 sg:person.0652142515.58 schema:affiliation grid-institutes:grid.147455.6
158 schema:familyName Lee
159 schema:givenName Seunghak
160 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0652142515.58
161 rdf:type schema:Person
162 grid-institutes:None schema:alternateName Bloomberg L.P., New York, NY, USA
163 schema:name Bloomberg L.P., New York, NY, USA
164 rdf:type schema:Organization
165 grid-institutes:grid.147455.6 schema:alternateName School of Computer Science, Carnegie Mellon University, Pittsburgh, PA, USA
166 schema:name School of Computer Science, Carnegie Mellon University, Pittsburgh, PA, USA
167 rdf:type schema:Organization
168 grid-institutes:grid.481554.9 schema:alternateName IBM T. J. Watson Research Center, New York, NY, USA
169 schema:name IBM T. J. Watson Research Center, New York, NY, USA
170 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...