Ontology type: schema:Chapter
2015-03-29
AUTHORSJean-Philippe Aumasson , Philipp Jovanovic , Samuel Neves
ABSTRACTThis paper presents a thorough analysis of the AEAD scheme NORX, focussing on differential and rotational properties. We first introduce mathematical models that describe differential propagation with respect to the non-linear operation of NORX. Afterwards, we adapt a framework previously proposed for ARX designs allowing us to automatise the search for differentials and characteristics. We give upper bounds on the differential probability for a small number of steps of the NORX core permutation. For example, in a scenario where an attacker can only modify the nonce during initialisation, we show that characteristics have probabilities of less than \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$2^{-60}$$\end{document} (\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$32$$\end{document}-bit) and \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$2^{-53}$$\end{document} (\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$64$$\end{document}-bit) after only one round. Furthermore, we describe how we found the best characteristics for four rounds, which have probabilities of \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$2^{-584}$$\end{document} (\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$32$$\end{document}-bit) and \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$2^{-836}$$\end{document} (\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$64$$\end{document}-bit), respectively. Finally, we discuss some rotational properties of the core permutation which yield some first, rough bounds and can be used as a basis for future studies. More... »
PAGES306-324
Progress in Cryptology - LATINCRYPT 2014
ISBN
978-3-319-16294-2
978-3-319-16295-9
http://scigraph.springernature.com/pub.10.1007/978-3-319-16295-9_17
DOIhttp://dx.doi.org/10.1007/978-3-319-16295-9_17
DIMENSIONShttps://app.dimensions.ai/details/publication/pub.1016618707
JSON-LD is the canonical representation for SciGraph data.
TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT
[
{
"@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json",
"about": [
{
"id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/01",
"inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/",
"name": "Mathematical Sciences",
"type": "DefinedTerm"
},
{
"id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0102",
"inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/",
"name": "Applied Mathematics",
"type": "DefinedTerm"
}
],
"author": [
{
"affiliation": {
"alternateName": "Kudelski Security, Lausanne, Switzerland",
"id": "http://www.grid.ac/institutes/None",
"name": [
"Kudelski Security, Lausanne, Switzerland"
],
"type": "Organization"
},
"familyName": "Aumasson",
"givenName": "Jean-Philippe",
"id": "sg:person.012606440341.66",
"sameAs": [
"https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012606440341.66"
],
"type": "Person"
},
{
"affiliation": {
"alternateName": "University of Passau, Passau, Germany",
"id": "http://www.grid.ac/institutes/grid.11046.32",
"name": [
"University of Passau, Passau, Germany"
],
"type": "Organization"
},
"familyName": "Jovanovic",
"givenName": "Philipp",
"id": "sg:person.016300712435.04",
"sameAs": [
"https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016300712435.04"
],
"type": "Person"
},
{
"affiliation": {
"alternateName": "University of Coimbra, Coimbra, Portugal",
"id": "http://www.grid.ac/institutes/grid.8051.c",
"name": [
"University of Coimbra, Coimbra, Portugal"
],
"type": "Organization"
},
"familyName": "Neves",
"givenName": "Samuel",
"id": "sg:person.011136377232.42",
"sameAs": [
"https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011136377232.42"
],
"type": "Person"
}
],
"datePublished": "2015-03-29",
"datePublishedReg": "2015-03-29",
"description": "This paper presents a thorough analysis of the AEAD scheme NORX, focussing on differential and rotational properties. We first introduce mathematical models that describe differential propagation with respect to the non-linear operation of NORX. Afterwards, we adapt a framework previously proposed for ARX designs allowing us to automatise the search for differentials and characteristics. We give upper bounds on the differential probability for a small number of steps of the NORX core permutation. For example, in a scenario where an attacker can only modify the nonce during initialisation, we show that characteristics have probabilities of less than \\documentclass[12pt]{minimal}\n\t\t\t\t\\usepackage{amsmath}\n\t\t\t\t\\usepackage{wasysym}\n\t\t\t\t\\usepackage{amsfonts}\n\t\t\t\t\\usepackage{amssymb}\n\t\t\t\t\\usepackage{amsbsy}\n\t\t\t\t\\usepackage{mathrsfs}\n\t\t\t\t\\usepackage{upgreek}\n\t\t\t\t\\setlength{\\oddsidemargin}{-69pt}\n\t\t\t\t\\begin{document}$$2^{-60}$$\\end{document} (\\documentclass[12pt]{minimal}\n\t\t\t\t\\usepackage{amsmath}\n\t\t\t\t\\usepackage{wasysym}\n\t\t\t\t\\usepackage{amsfonts}\n\t\t\t\t\\usepackage{amssymb}\n\t\t\t\t\\usepackage{amsbsy}\n\t\t\t\t\\usepackage{mathrsfs}\n\t\t\t\t\\usepackage{upgreek}\n\t\t\t\t\\setlength{\\oddsidemargin}{-69pt}\n\t\t\t\t\\begin{document}$$32$$\\end{document}-bit) and \\documentclass[12pt]{minimal}\n\t\t\t\t\\usepackage{amsmath}\n\t\t\t\t\\usepackage{wasysym}\n\t\t\t\t\\usepackage{amsfonts}\n\t\t\t\t\\usepackage{amssymb}\n\t\t\t\t\\usepackage{amsbsy}\n\t\t\t\t\\usepackage{mathrsfs}\n\t\t\t\t\\usepackage{upgreek}\n\t\t\t\t\\setlength{\\oddsidemargin}{-69pt}\n\t\t\t\t\\begin{document}$$2^{-53}$$\\end{document} (\\documentclass[12pt]{minimal}\n\t\t\t\t\\usepackage{amsmath}\n\t\t\t\t\\usepackage{wasysym}\n\t\t\t\t\\usepackage{amsfonts}\n\t\t\t\t\\usepackage{amssymb}\n\t\t\t\t\\usepackage{amsbsy}\n\t\t\t\t\\usepackage{mathrsfs}\n\t\t\t\t\\usepackage{upgreek}\n\t\t\t\t\\setlength{\\oddsidemargin}{-69pt}\n\t\t\t\t\\begin{document}$$64$$\\end{document}-bit) after only one round. Furthermore, we describe how we found the best characteristics for four rounds, which have probabilities of \\documentclass[12pt]{minimal}\n\t\t\t\t\\usepackage{amsmath}\n\t\t\t\t\\usepackage{wasysym}\n\t\t\t\t\\usepackage{amsfonts}\n\t\t\t\t\\usepackage{amssymb}\n\t\t\t\t\\usepackage{amsbsy}\n\t\t\t\t\\usepackage{mathrsfs}\n\t\t\t\t\\usepackage{upgreek}\n\t\t\t\t\\setlength{\\oddsidemargin}{-69pt}\n\t\t\t\t\\begin{document}$$2^{-584}$$\\end{document} (\\documentclass[12pt]{minimal}\n\t\t\t\t\\usepackage{amsmath}\n\t\t\t\t\\usepackage{wasysym}\n\t\t\t\t\\usepackage{amsfonts}\n\t\t\t\t\\usepackage{amssymb}\n\t\t\t\t\\usepackage{amsbsy}\n\t\t\t\t\\usepackage{mathrsfs}\n\t\t\t\t\\usepackage{upgreek}\n\t\t\t\t\\setlength{\\oddsidemargin}{-69pt}\n\t\t\t\t\\begin{document}$$32$$\\end{document}-bit) and \\documentclass[12pt]{minimal}\n\t\t\t\t\\usepackage{amsmath}\n\t\t\t\t\\usepackage{wasysym}\n\t\t\t\t\\usepackage{amsfonts}\n\t\t\t\t\\usepackage{amssymb}\n\t\t\t\t\\usepackage{amsbsy}\n\t\t\t\t\\usepackage{mathrsfs}\n\t\t\t\t\\usepackage{upgreek}\n\t\t\t\t\\setlength{\\oddsidemargin}{-69pt}\n\t\t\t\t\\begin{document}$$2^{-836}$$\\end{document} (\\documentclass[12pt]{minimal}\n\t\t\t\t\\usepackage{amsmath}\n\t\t\t\t\\usepackage{wasysym}\n\t\t\t\t\\usepackage{amsfonts}\n\t\t\t\t\\usepackage{amssymb}\n\t\t\t\t\\usepackage{amsbsy}\n\t\t\t\t\\usepackage{mathrsfs}\n\t\t\t\t\\usepackage{upgreek}\n\t\t\t\t\\setlength{\\oddsidemargin}{-69pt}\n\t\t\t\t\\begin{document}$$64$$\\end{document}-bit), respectively. Finally, we discuss some rotational properties of the core permutation which yield some first, rough bounds and can be used as a basis for future studies.",
"editor": [
{
"familyName": "Aranha",
"givenName": "Diego F.",
"type": "Person"
},
{
"familyName": "Menezes",
"givenName": "Alfred",
"type": "Person"
}
],
"genre": "chapter",
"id": "sg:pub.10.1007/978-3-319-16295-9_17",
"inLanguage": "en",
"isAccessibleForFree": false,
"isPartOf": {
"isbn": [
"978-3-319-16294-2",
"978-3-319-16295-9"
],
"name": "Progress in Cryptology - LATINCRYPT 2014",
"type": "Book"
},
"keywords": [
"rotational properties",
"rough bounds",
"mathematical model",
"upper bounds",
"non-linear operations",
"differential probability",
"bounds",
"core permutation",
"ARX designs",
"probability",
"permutations",
"differential propagation",
"thorough analysis",
"properties",
"propagation",
"small number",
"initialisation",
"good characteristics",
"differential",
"model",
"framework",
"NORX",
"scenarios",
"number",
"respect",
"operation",
"design",
"characteristics",
"attacker",
"step",
"search",
"analysis",
"nonce",
"basis",
"rounds",
"study",
"future studies",
"example",
"paper"
],
"name": "Analysis of NORX: Investigating Differential and Rotational Properties",
"pagination": "306-324",
"productId": [
{
"name": "dimensions_id",
"type": "PropertyValue",
"value": [
"pub.1016618707"
]
},
{
"name": "doi",
"type": "PropertyValue",
"value": [
"10.1007/978-3-319-16295-9_17"
]
}
],
"publisher": {
"name": "Springer Nature",
"type": "Organisation"
},
"sameAs": [
"https://doi.org/10.1007/978-3-319-16295-9_17",
"https://app.dimensions.ai/details/publication/pub.1016618707"
],
"sdDataset": "chapters",
"sdDatePublished": "2022-06-01T22:30",
"sdLicense": "https://scigraph.springernature.com/explorer/license/",
"sdPublisher": {
"name": "Springer Nature - SN SciGraph project",
"type": "Organization"
},
"sdSource": "s3://com-springernature-scigraph/baseset/20220601/entities/gbq_results/chapter/chapter_236.jsonl",
"type": "Chapter",
"url": "https://doi.org/10.1007/978-3-319-16295-9_17"
}
]
Download the RDF metadata as: json-ld nt turtle xml License info
JSON-LD is a popular format for linked data which is fully compatible with JSON.
curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/978-3-319-16295-9_17'
N-Triples is a line-based linked data format ideal for batch operations.
curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/978-3-319-16295-9_17'
Turtle is a human-readable linked data format.
curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/978-3-319-16295-9_17'
RDF/XML is a standard XML format for linked data.
curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/978-3-319-16295-9_17'
This table displays all metadata directly associated to this object as RDF triples.
124 TRIPLES
23 PREDICATES
64 URIs
57 LITERALS
7 BLANK NODES
Subject | Predicate | Object | |
---|---|---|---|
1 | sg:pub.10.1007/978-3-319-16295-9_17 | schema:about | anzsrc-for:01 |
2 | ″ | ″ | anzsrc-for:0102 |
3 | ″ | schema:author | Nf1eee841775e43438e0fd342416f552e |
4 | ″ | schema:datePublished | 2015-03-29 |
5 | ″ | schema:datePublishedReg | 2015-03-29 |
6 | ″ | schema:description | This paper presents a thorough analysis of the AEAD scheme NORX, focussing on differential and rotational properties. We first introduce mathematical models that describe differential propagation with respect to the non-linear operation of NORX. Afterwards, we adapt a framework previously proposed for ARX designs allowing us to automatise the search for differentials and characteristics. We give upper bounds on the differential probability for a small number of steps of the NORX core permutation. For example, in a scenario where an attacker can only modify the nonce during initialisation, we show that characteristics have probabilities of less than \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$2^{-60}$$\end{document} (\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$32$$\end{document}-bit) and \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$2^{-53}$$\end{document} (\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$64$$\end{document}-bit) after only one round. Furthermore, we describe how we found the best characteristics for four rounds, which have probabilities of \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$2^{-584}$$\end{document} (\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$32$$\end{document}-bit) and \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$2^{-836}$$\end{document} (\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$64$$\end{document}-bit), respectively. Finally, we discuss some rotational properties of the core permutation which yield some first, rough bounds and can be used as a basis for future studies. |
7 | ″ | schema:editor | N492ecee9cbf8490eb818405fc9282d43 |
8 | ″ | schema:genre | chapter |
9 | ″ | schema:inLanguage | en |
10 | ″ | schema:isAccessibleForFree | false |
11 | ″ | schema:isPartOf | Nddee237e116f4153897b051e96509cd3 |
12 | ″ | schema:keywords | ARX designs |
13 | ″ | ″ | NORX |
14 | ″ | ″ | analysis |
15 | ″ | ″ | attacker |
16 | ″ | ″ | basis |
17 | ″ | ″ | bounds |
18 | ″ | ″ | characteristics |
19 | ″ | ″ | core permutation |
20 | ″ | ″ | design |
21 | ″ | ″ | differential |
22 | ″ | ″ | differential probability |
23 | ″ | ″ | differential propagation |
24 | ″ | ″ | example |
25 | ″ | ″ | framework |
26 | ″ | ″ | future studies |
27 | ″ | ″ | good characteristics |
28 | ″ | ″ | initialisation |
29 | ″ | ″ | mathematical model |
30 | ″ | ″ | model |
31 | ″ | ″ | non-linear operations |
32 | ″ | ″ | nonce |
33 | ″ | ″ | number |
34 | ″ | ″ | operation |
35 | ″ | ″ | paper |
36 | ″ | ″ | permutations |
37 | ″ | ″ | probability |
38 | ″ | ″ | propagation |
39 | ″ | ″ | properties |
40 | ″ | ″ | respect |
41 | ″ | ″ | rotational properties |
42 | ″ | ″ | rough bounds |
43 | ″ | ″ | rounds |
44 | ″ | ″ | scenarios |
45 | ″ | ″ | search |
46 | ″ | ″ | small number |
47 | ″ | ″ | step |
48 | ″ | ″ | study |
49 | ″ | ″ | thorough analysis |
50 | ″ | ″ | upper bounds |
51 | ″ | schema:name | Analysis of NORX: Investigating Differential and Rotational Properties |
52 | ″ | schema:pagination | 306-324 |
53 | ″ | schema:productId | N412874070769429f89f8b2f39b790017 |
54 | ″ | ″ | Nd1139aaf94c54549bad3d3bb86ebf573 |
55 | ″ | schema:publisher | N30e7f1796a5546a58ad1d05ebf1fbbdc |
56 | ″ | schema:sameAs | https://app.dimensions.ai/details/publication/pub.1016618707 |
57 | ″ | ″ | https://doi.org/10.1007/978-3-319-16295-9_17 |
58 | ″ | schema:sdDatePublished | 2022-06-01T22:30 |
59 | ″ | schema:sdLicense | https://scigraph.springernature.com/explorer/license/ |
60 | ″ | schema:sdPublisher | N7f941509790a45d9ba0958aab9b262c6 |
61 | ″ | schema:url | https://doi.org/10.1007/978-3-319-16295-9_17 |
62 | ″ | sgo:license | sg:explorer/license/ |
63 | ″ | sgo:sdDataset | chapters |
64 | ″ | rdf:type | schema:Chapter |
65 | N30e7f1796a5546a58ad1d05ebf1fbbdc | schema:name | Springer Nature |
66 | ″ | rdf:type | schema:Organisation |
67 | N38e54786ec89489098370af14bd2f432 | schema:familyName | Aranha |
68 | ″ | schema:givenName | Diego F. |
69 | ″ | rdf:type | schema:Person |
70 | N412874070769429f89f8b2f39b790017 | schema:name | doi |
71 | ″ | schema:value | 10.1007/978-3-319-16295-9_17 |
72 | ″ | rdf:type | schema:PropertyValue |
73 | N492ecee9cbf8490eb818405fc9282d43 | rdf:first | N38e54786ec89489098370af14bd2f432 |
74 | ″ | rdf:rest | Nf41c29a95acc4e88b29816ee2a38913b |
75 | N62923a5a56374f89a9ea7e8ebf9b7920 | rdf:first | sg:person.011136377232.42 |
76 | ″ | rdf:rest | rdf:nil |
77 | N7d0ebd205b0945fb9611d0a87a8e4961 | rdf:first | sg:person.016300712435.04 |
78 | ″ | rdf:rest | N62923a5a56374f89a9ea7e8ebf9b7920 |
79 | N7f941509790a45d9ba0958aab9b262c6 | schema:name | Springer Nature - SN SciGraph project |
80 | ″ | rdf:type | schema:Organization |
81 | N8bfa4245887d41cd9e7d37134368f0e9 | schema:familyName | Menezes |
82 | ″ | schema:givenName | Alfred |
83 | ″ | rdf:type | schema:Person |
84 | Nd1139aaf94c54549bad3d3bb86ebf573 | schema:name | dimensions_id |
85 | ″ | schema:value | pub.1016618707 |
86 | ″ | rdf:type | schema:PropertyValue |
87 | Nddee237e116f4153897b051e96509cd3 | schema:isbn | 978-3-319-16294-2 |
88 | ″ | ″ | 978-3-319-16295-9 |
89 | ″ | schema:name | Progress in Cryptology - LATINCRYPT 2014 |
90 | ″ | rdf:type | schema:Book |
91 | Nf1eee841775e43438e0fd342416f552e | rdf:first | sg:person.012606440341.66 |
92 | ″ | rdf:rest | N7d0ebd205b0945fb9611d0a87a8e4961 |
93 | Nf41c29a95acc4e88b29816ee2a38913b | rdf:first | N8bfa4245887d41cd9e7d37134368f0e9 |
94 | ″ | rdf:rest | rdf:nil |
95 | anzsrc-for:01 | schema:inDefinedTermSet | anzsrc-for: |
96 | ″ | schema:name | Mathematical Sciences |
97 | ″ | rdf:type | schema:DefinedTerm |
98 | anzsrc-for:0102 | schema:inDefinedTermSet | anzsrc-for: |
99 | ″ | schema:name | Applied Mathematics |
100 | ″ | rdf:type | schema:DefinedTerm |
101 | sg:person.011136377232.42 | schema:affiliation | grid-institutes:grid.8051.c |
102 | ″ | schema:familyName | Neves |
103 | ″ | schema:givenName | Samuel |
104 | ″ | schema:sameAs | https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011136377232.42 |
105 | ″ | rdf:type | schema:Person |
106 | sg:person.012606440341.66 | schema:affiliation | grid-institutes:None |
107 | ″ | schema:familyName | Aumasson |
108 | ″ | schema:givenName | Jean-Philippe |
109 | ″ | schema:sameAs | https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012606440341.66 |
110 | ″ | rdf:type | schema:Person |
111 | sg:person.016300712435.04 | schema:affiliation | grid-institutes:grid.11046.32 |
112 | ″ | schema:familyName | Jovanovic |
113 | ″ | schema:givenName | Philipp |
114 | ″ | schema:sameAs | https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016300712435.04 |
115 | ″ | rdf:type | schema:Person |
116 | grid-institutes:None | schema:alternateName | Kudelski Security, Lausanne, Switzerland |
117 | ″ | schema:name | Kudelski Security, Lausanne, Switzerland |
118 | ″ | rdf:type | schema:Organization |
119 | grid-institutes:grid.11046.32 | schema:alternateName | University of Passau, Passau, Germany |
120 | ″ | schema:name | University of Passau, Passau, Germany |
121 | ″ | rdf:type | schema:Organization |
122 | grid-institutes:grid.8051.c | schema:alternateName | University of Coimbra, Coimbra, Portugal |
123 | ″ | schema:name | University of Coimbra, Coimbra, Portugal |
124 | ″ | rdf:type | schema:Organization |