First International Workshop on Video Segmentation - Panel Discussion View Full Text


Ontology type: schema:Chapter      Open Access: True


Chapter Info

DATE

2015-03-19

AUTHORS

Thomas Brox , Fabio Galasso , Fuxin Li , James Matthew Rehg , Bernt Schiele

ABSTRACT

Interest in video segmentation has grown significantly in recent years, resulting in a large body of works along with advances in both methods and datasets. Progress in video segmentation would enable new approaches to building 3D object models from video, understanding dynamic scenes, robot-object interaction and several other high-level vision tasks. The workshop brought together a broad and representative group of video segmentation researchers working on a wide range of topics. This paper summarizes the panel discussion at the workshop, which focused on three questions: (1) Why does video segmentation currently not meet the performance of image segmentation and what difficulties prevent it from leveraging motion? (2) Is video segmentation a stand-alone problem or should it rather be addressed in combination with recognition and reconstruction? (3) Which are the right video segmentation subtasks the field should focus on, and how can we measure progress? More... »

PAGES

383-388

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/978-3-319-16220-1_27

DOI

http://dx.doi.org/10.1007/978-3-319-16220-1_27

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1051174885


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/08", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Information and Computing Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0801", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Artificial Intelligence and Image Processing", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "University of Freiburg, Freiburg im Breisgau, Germany", 
          "id": "http://www.grid.ac/institutes/grid.5963.9", 
          "name": [
            "University of Freiburg, Freiburg im Breisgau, Germany"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Brox", 
        "givenName": "Thomas", 
        "id": "sg:person.012443225372.65", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012443225372.65"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "OSRAM Corporate Research, Munich, Germany", 
          "id": "http://www.grid.ac/institutes/None", 
          "name": [
            "Max Planck Institute for Informatics, Saarbr\u00fccken, Germany", 
            "OSRAM Corporate Research, Munich, Germany"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Galasso", 
        "givenName": "Fabio", 
        "id": "sg:person.012741654672.67", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012741654672.67"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Georgia Institute of Technology, Atlanta, GA, USA", 
          "id": "http://www.grid.ac/institutes/grid.213917.f", 
          "name": [
            "Georgia Institute of Technology, Atlanta, GA, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Li", 
        "givenName": "Fuxin", 
        "id": "sg:person.011575770401.90", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011575770401.90"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Georgia Institute of Technology, Atlanta, GA, USA", 
          "id": "http://www.grid.ac/institutes/grid.213917.f", 
          "name": [
            "Georgia Institute of Technology, Atlanta, GA, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Rehg", 
        "givenName": "James Matthew", 
        "id": "sg:person.01177231304.03", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01177231304.03"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Max Planck Institute for Informatics, Saarbr\u00fccken, Germany", 
          "id": "http://www.grid.ac/institutes/grid.419528.3", 
          "name": [
            "Max Planck Institute for Informatics, Saarbr\u00fccken, Germany"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Schiele", 
        "givenName": "Bernt", 
        "id": "sg:person.01174260421.90", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01174260421.90"
        ], 
        "type": "Person"
      }
    ], 
    "datePublished": "2015-03-19", 
    "datePublishedReg": "2015-03-19", 
    "description": "Interest in video segmentation has grown significantly in recent years, resulting in a large body of works along with advances in both methods and datasets. Progress in video segmentation would enable new approaches to building 3D object models from video, understanding dynamic scenes, robot-object interaction and several other high-level vision tasks. The workshop brought together a broad and representative group of video segmentation researchers working on a wide range of topics. This paper summarizes the panel discussion at the workshop, which focused on three questions: (1) Why does video segmentation currently not meet the performance of image segmentation and what difficulties prevent it from leveraging motion? (2) Is video segmentation a stand-alone problem or should it rather be addressed in combination with recognition and reconstruction? (3) Which are the right video segmentation subtasks the field should focus on, and how can we measure progress?", 
    "editor": [
      {
        "familyName": "Agapito", 
        "givenName": "Lourdes", 
        "type": "Person"
      }, 
      {
        "familyName": "Bronstein", 
        "givenName": "Michael M.", 
        "type": "Person"
      }, 
      {
        "familyName": "Rother", 
        "givenName": "Carsten", 
        "type": "Person"
      }
    ], 
    "genre": "chapter", 
    "id": "sg:pub.10.1007/978-3-319-16220-1_27", 
    "isAccessibleForFree": true, 
    "isPartOf": {
      "isbn": [
        "978-3-319-16219-5", 
        "978-3-319-16220-1"
      ], 
      "name": "Computer Vision - ECCV 2014 Workshops", 
      "type": "Book"
    }, 
    "keywords": [
      "video segmentation", 
      "high-level vision tasks", 
      "robot-object interaction", 
      "vision tasks", 
      "object model", 
      "dynamic scenes", 
      "image segmentation", 
      "segmentation", 
      "First International Workshop", 
      "new approach", 
      "stand-alone problem", 
      "recent years", 
      "video", 
      "International Workshop", 
      "dataset", 
      "scene", 
      "task", 
      "recognition", 
      "workshop", 
      "performance", 
      "panel discussion", 
      "wide range", 
      "researchers", 
      "topic", 
      "large body", 
      "reconstruction", 
      "work", 
      "model", 
      "advances", 
      "method", 
      "progress", 
      "difficulties", 
      "interest", 
      "motion", 
      "discussion", 
      "field", 
      "combination", 
      "questions", 
      "interaction", 
      "representative group", 
      "range", 
      "years", 
      "body", 
      "group", 
      "paper", 
      "problem", 
      "approach"
    ], 
    "name": "First International Workshop on Video Segmentation - Panel Discussion", 
    "pagination": "383-388", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1051174885"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/978-3-319-16220-1_27"
        ]
      }
    ], 
    "publisher": {
      "name": "Springer Nature", 
      "type": "Organisation"
    }, 
    "sameAs": [
      "https://doi.org/10.1007/978-3-319-16220-1_27", 
      "https://app.dimensions.ai/details/publication/pub.1051174885"
    ], 
    "sdDataset": "chapters", 
    "sdDatePublished": "2022-09-02T16:11", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20220902/entities/gbq_results/chapter/chapter_169.jsonl", 
    "type": "Chapter", 
    "url": "https://doi.org/10.1007/978-3-319-16220-1_27"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/978-3-319-16220-1_27'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/978-3-319-16220-1_27'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/978-3-319-16220-1_27'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/978-3-319-16220-1_27'


 

This table displays all metadata directly associated to this object as RDF triples.

154 TRIPLES      22 PREDICATES      71 URIs      64 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/978-3-319-16220-1_27 schema:about anzsrc-for:08
2 anzsrc-for:0801
3 schema:author N5bab236c617047a98b1960e9944b4cbb
4 schema:datePublished 2015-03-19
5 schema:datePublishedReg 2015-03-19
6 schema:description Interest in video segmentation has grown significantly in recent years, resulting in a large body of works along with advances in both methods and datasets. Progress in video segmentation would enable new approaches to building 3D object models from video, understanding dynamic scenes, robot-object interaction and several other high-level vision tasks. The workshop brought together a broad and representative group of video segmentation researchers working on a wide range of topics. This paper summarizes the panel discussion at the workshop, which focused on three questions: (1) Why does video segmentation currently not meet the performance of image segmentation and what difficulties prevent it from leveraging motion? (2) Is video segmentation a stand-alone problem or should it rather be addressed in combination with recognition and reconstruction? (3) Which are the right video segmentation subtasks the field should focus on, and how can we measure progress?
7 schema:editor Nddf91d08d7494e398c9bde515027c74a
8 schema:genre chapter
9 schema:isAccessibleForFree true
10 schema:isPartOf Nc42d3d97ea5046a1abd463e1b7632142
11 schema:keywords First International Workshop
12 International Workshop
13 advances
14 approach
15 body
16 combination
17 dataset
18 difficulties
19 discussion
20 dynamic scenes
21 field
22 group
23 high-level vision tasks
24 image segmentation
25 interaction
26 interest
27 large body
28 method
29 model
30 motion
31 new approach
32 object model
33 panel discussion
34 paper
35 performance
36 problem
37 progress
38 questions
39 range
40 recent years
41 recognition
42 reconstruction
43 representative group
44 researchers
45 robot-object interaction
46 scene
47 segmentation
48 stand-alone problem
49 task
50 topic
51 video
52 video segmentation
53 vision tasks
54 wide range
55 work
56 workshop
57 years
58 schema:name First International Workshop on Video Segmentation - Panel Discussion
59 schema:pagination 383-388
60 schema:productId N2fa0e2ed0bed48ed82c9ac54d05d2057
61 Nc329ce62995b4e74ad4167147caf8a2e
62 schema:publisher Nab8c7092c4934efc86be90162e107ae3
63 schema:sameAs https://app.dimensions.ai/details/publication/pub.1051174885
64 https://doi.org/10.1007/978-3-319-16220-1_27
65 schema:sdDatePublished 2022-09-02T16:11
66 schema:sdLicense https://scigraph.springernature.com/explorer/license/
67 schema:sdPublisher N579f22fb7ab7472cac782022924c9c09
68 schema:url https://doi.org/10.1007/978-3-319-16220-1_27
69 sgo:license sg:explorer/license/
70 sgo:sdDataset chapters
71 rdf:type schema:Chapter
72 N2a3ea91293bd4e0fa1f722d44d53ad02 schema:familyName Bronstein
73 schema:givenName Michael M.
74 rdf:type schema:Person
75 N2fa0e2ed0bed48ed82c9ac54d05d2057 schema:name dimensions_id
76 schema:value pub.1051174885
77 rdf:type schema:PropertyValue
78 N4713353d758a448ab1107d295e44a143 schema:familyName Rother
79 schema:givenName Carsten
80 rdf:type schema:Person
81 N56adb448c6ad4c98863e2aba947d426e schema:familyName Agapito
82 schema:givenName Lourdes
83 rdf:type schema:Person
84 N579f22fb7ab7472cac782022924c9c09 schema:name Springer Nature - SN SciGraph project
85 rdf:type schema:Organization
86 N5bab236c617047a98b1960e9944b4cbb rdf:first sg:person.012443225372.65
87 rdf:rest N943739d8b1234417a6cf569a58bbaa43
88 N5feffbdd879f4dd0a1f4c5ae0e93fdfa rdf:first sg:person.011575770401.90
89 rdf:rest N7fed84505fb64ae8a96a57e6d7edcb06
90 N7fed84505fb64ae8a96a57e6d7edcb06 rdf:first sg:person.01177231304.03
91 rdf:rest Ne9a843e2908846a597457db0b5471e03
92 N820f33b1b2a8400192d1d81de949c66b rdf:first N4713353d758a448ab1107d295e44a143
93 rdf:rest rdf:nil
94 N943739d8b1234417a6cf569a58bbaa43 rdf:first sg:person.012741654672.67
95 rdf:rest N5feffbdd879f4dd0a1f4c5ae0e93fdfa
96 Nab8c7092c4934efc86be90162e107ae3 schema:name Springer Nature
97 rdf:type schema:Organisation
98 Nc329ce62995b4e74ad4167147caf8a2e schema:name doi
99 schema:value 10.1007/978-3-319-16220-1_27
100 rdf:type schema:PropertyValue
101 Nc42d3d97ea5046a1abd463e1b7632142 schema:isbn 978-3-319-16219-5
102 978-3-319-16220-1
103 schema:name Computer Vision - ECCV 2014 Workshops
104 rdf:type schema:Book
105 Nddf91d08d7494e398c9bde515027c74a rdf:first N56adb448c6ad4c98863e2aba947d426e
106 rdf:rest Ne91dc61a17394de6b0d21ef891f2ffd6
107 Ne91dc61a17394de6b0d21ef891f2ffd6 rdf:first N2a3ea91293bd4e0fa1f722d44d53ad02
108 rdf:rest N820f33b1b2a8400192d1d81de949c66b
109 Ne9a843e2908846a597457db0b5471e03 rdf:first sg:person.01174260421.90
110 rdf:rest rdf:nil
111 anzsrc-for:08 schema:inDefinedTermSet anzsrc-for:
112 schema:name Information and Computing Sciences
113 rdf:type schema:DefinedTerm
114 anzsrc-for:0801 schema:inDefinedTermSet anzsrc-for:
115 schema:name Artificial Intelligence and Image Processing
116 rdf:type schema:DefinedTerm
117 sg:person.011575770401.90 schema:affiliation grid-institutes:grid.213917.f
118 schema:familyName Li
119 schema:givenName Fuxin
120 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011575770401.90
121 rdf:type schema:Person
122 sg:person.01174260421.90 schema:affiliation grid-institutes:grid.419528.3
123 schema:familyName Schiele
124 schema:givenName Bernt
125 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01174260421.90
126 rdf:type schema:Person
127 sg:person.01177231304.03 schema:affiliation grid-institutes:grid.213917.f
128 schema:familyName Rehg
129 schema:givenName James Matthew
130 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01177231304.03
131 rdf:type schema:Person
132 sg:person.012443225372.65 schema:affiliation grid-institutes:grid.5963.9
133 schema:familyName Brox
134 schema:givenName Thomas
135 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012443225372.65
136 rdf:type schema:Person
137 sg:person.012741654672.67 schema:affiliation grid-institutes:None
138 schema:familyName Galasso
139 schema:givenName Fabio
140 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012741654672.67
141 rdf:type schema:Person
142 grid-institutes:None schema:alternateName OSRAM Corporate Research, Munich, Germany
143 schema:name Max Planck Institute for Informatics, Saarbrücken, Germany
144 OSRAM Corporate Research, Munich, Germany
145 rdf:type schema:Organization
146 grid-institutes:grid.213917.f schema:alternateName Georgia Institute of Technology, Atlanta, GA, USA
147 schema:name Georgia Institute of Technology, Atlanta, GA, USA
148 rdf:type schema:Organization
149 grid-institutes:grid.419528.3 schema:alternateName Max Planck Institute for Informatics, Saarbrücken, Germany
150 schema:name Max Planck Institute for Informatics, Saarbrücken, Germany
151 rdf:type schema:Organization
152 grid-institutes:grid.5963.9 schema:alternateName University of Freiburg, Freiburg im Breisgau, Germany
153 schema:name University of Freiburg, Freiburg im Breisgau, Germany
154 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...