Ontology type: schema:Chapter
2015-02-04
AUTHORSPaul Ellinghaus , Mihail Nedjalkov , Siegfried Selberherr
ABSTRACTThe signed-particle Monte Carlo method for solving the Wigner equation has made multi-dimensional solutions numerically feasible. The latter is attributable to the concept of annihilation of independent indistinguishable particles, which counteracts the exponential growth in the number of particles due to generation. After the annihilation step, the particles regenerated within each cell of the phase-space should replicate the same information as before the annihilation, albeit with a lesser number of particles. Since the semi-discrete Wigner equation allows only discrete momentum values, this information can be retained with regeneration, however, the position of the regenerated particles in the cell must be chosen wisely. A simple uniform distribution over the spatial domain represented by the cell introduces a ‘numerical diffusion’ which artificially propagates particles simply through the process of regeneration. An optimized regeneration scheme is proposed, which counteracts this effect of ‘numerical diffusion’ in an efficient manner. More... »
PAGES27-33
Numerical Methods and Applications
ISBN
978-3-319-15584-5
978-3-319-15585-2
http://scigraph.springernature.com/pub.10.1007/978-3-319-15585-2_3
DOIhttp://dx.doi.org/10.1007/978-3-319-15585-2_3
DIMENSIONShttps://app.dimensions.ai/details/publication/pub.1030593658
JSON-LD is the canonical representation for SciGraph data.
TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT
[
{
"@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json",
"about": [
{
"id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/09",
"inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/",
"name": "Engineering",
"type": "DefinedTerm"
},
{
"id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0904",
"inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/",
"name": "Chemical Engineering",
"type": "DefinedTerm"
}
],
"author": [
{
"affiliation": {
"alternateName": "Institute for Microelectronics, TU Wien, Vienna, Austria",
"id": "http://www.grid.ac/institutes/grid.5329.d",
"name": [
"Institute for Microelectronics, TU Wien, Vienna, Austria"
],
"type": "Organization"
},
"familyName": "Ellinghaus",
"givenName": "Paul",
"id": "sg:person.016442755635.85",
"sameAs": [
"https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016442755635.85"
],
"type": "Person"
},
{
"affiliation": {
"alternateName": "Institute for Microelectronics, TU Wien, Vienna, Austria",
"id": "http://www.grid.ac/institutes/grid.5329.d",
"name": [
"Institute for Microelectronics, TU Wien, Vienna, Austria"
],
"type": "Organization"
},
"familyName": "Nedjalkov",
"givenName": "Mihail",
"id": "sg:person.011142023427.48",
"sameAs": [
"https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011142023427.48"
],
"type": "Person"
},
{
"affiliation": {
"alternateName": "Institute for Microelectronics, TU Wien, Vienna, Austria",
"id": "http://www.grid.ac/institutes/grid.5329.d",
"name": [
"Institute for Microelectronics, TU Wien, Vienna, Austria"
],
"type": "Organization"
},
"familyName": "Selberherr",
"givenName": "Siegfried",
"id": "sg:person.013033344117.92",
"sameAs": [
"https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013033344117.92"
],
"type": "Person"
}
],
"datePublished": "2015-02-04",
"datePublishedReg": "2015-02-04",
"description": "The signed-particle Monte Carlo method for solving the Wigner equation has made multi-dimensional solutions numerically feasible. The latter is attributable to the concept of annihilation of independent indistinguishable particles, which counteracts the exponential growth in the number of particles due to generation. After the annihilation step, the particles regenerated within each cell of the phase-space should replicate the same information as before the annihilation, albeit with a lesser number of particles. Since the semi-discrete Wigner equation allows only discrete momentum values, this information can be retained with regeneration, however, the position of the regenerated particles in the cell must be chosen wisely. A simple uniform distribution over the spatial domain represented by the cell introduces a \u2018numerical diffusion\u2019 which artificially propagates particles simply through the process of regeneration. An optimized regeneration scheme is proposed, which counteracts this effect of \u2018numerical diffusion\u2019 in an efficient manner.",
"editor": [
{
"familyName": "Dimov",
"givenName": "Ivan",
"type": "Person"
},
{
"familyName": "Fidanova",
"givenName": "Stefka",
"type": "Person"
},
{
"familyName": "Lirkov",
"givenName": "Ivan",
"type": "Person"
}
],
"genre": "chapter",
"id": "sg:pub.10.1007/978-3-319-15585-2_3",
"inLanguage": "en",
"isAccessibleForFree": false,
"isPartOf": {
"isbn": [
"978-3-319-15584-5",
"978-3-319-15585-2"
],
"name": "Numerical Methods and Applications",
"type": "Book"
},
"keywords": [
"Monte Carlo method",
"Wigner equation",
"numerical diffusion",
"Carlo method",
"Wigner Monte Carlo method",
"multi-dimensional solutions",
"indistinguishable particles",
"number of particles",
"equations",
"momentum values",
"simple uniform distribution",
"spatial domain",
"efficient manner",
"scheme",
"less number",
"regenerated particles",
"uniform distribution",
"annihilation",
"particles",
"diffusion",
"exponential growth",
"solution",
"same information",
"regeneration scheme",
"number",
"distribution",
"information",
"method",
"concept",
"domain",
"step",
"position",
"values",
"generation",
"regeneration",
"process",
"process of regeneration",
"manner",
"effect",
"growth",
"cells",
"annihilation step"
],
"name": "Optimized Particle Regeneration Scheme for the Wigner Monte Carlo Method",
"pagination": "27-33",
"productId": [
{
"name": "dimensions_id",
"type": "PropertyValue",
"value": [
"pub.1030593658"
]
},
{
"name": "doi",
"type": "PropertyValue",
"value": [
"10.1007/978-3-319-15585-2_3"
]
}
],
"publisher": {
"name": "Springer Nature",
"type": "Organisation"
},
"sameAs": [
"https://doi.org/10.1007/978-3-319-15585-2_3",
"https://app.dimensions.ai/details/publication/pub.1030593658"
],
"sdDataset": "chapters",
"sdDatePublished": "2022-05-10T10:55",
"sdLicense": "https://scigraph.springernature.com/explorer/license/",
"sdPublisher": {
"name": "Springer Nature - SN SciGraph project",
"type": "Organization"
},
"sdSource": "s3://com-springernature-scigraph/baseset/20220509/entities/gbq_results/chapter/chapter_56.jsonl",
"type": "Chapter",
"url": "https://doi.org/10.1007/978-3-319-15585-2_3"
}
]
Download the RDF metadata as: json-ld nt turtle xml License info
JSON-LD is a popular format for linked data which is fully compatible with JSON.
curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/978-3-319-15585-2_3'
N-Triples is a line-based linked data format ideal for batch operations.
curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/978-3-319-15585-2_3'
Turtle is a human-readable linked data format.
curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/978-3-319-15585-2_3'
RDF/XML is a standard XML format for linked data.
curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/978-3-319-15585-2_3'
This table displays all metadata directly associated to this object as RDF triples.
126 TRIPLES
23 PREDICATES
67 URIs
60 LITERALS
7 BLANK NODES
Subject | Predicate | Object | |
---|---|---|---|
1 | sg:pub.10.1007/978-3-319-15585-2_3 | schema:about | anzsrc-for:09 |
2 | ″ | ″ | anzsrc-for:0904 |
3 | ″ | schema:author | Ncdac2bdca64a49c18c3b0f3c7371fb41 |
4 | ″ | schema:datePublished | 2015-02-04 |
5 | ″ | schema:datePublishedReg | 2015-02-04 |
6 | ″ | schema:description | The signed-particle Monte Carlo method for solving the Wigner equation has made multi-dimensional solutions numerically feasible. The latter is attributable to the concept of annihilation of independent indistinguishable particles, which counteracts the exponential growth in the number of particles due to generation. After the annihilation step, the particles regenerated within each cell of the phase-space should replicate the same information as before the annihilation, albeit with a lesser number of particles. Since the semi-discrete Wigner equation allows only discrete momentum values, this information can be retained with regeneration, however, the position of the regenerated particles in the cell must be chosen wisely. A simple uniform distribution over the spatial domain represented by the cell introduces a ‘numerical diffusion’ which artificially propagates particles simply through the process of regeneration. An optimized regeneration scheme is proposed, which counteracts this effect of ‘numerical diffusion’ in an efficient manner. |
7 | ″ | schema:editor | N4795a6c4771f47b1ad4c9d49540677a1 |
8 | ″ | schema:genre | chapter |
9 | ″ | schema:inLanguage | en |
10 | ″ | schema:isAccessibleForFree | false |
11 | ″ | schema:isPartOf | N8667682af5dd4b7fad3e4797ef6b26cf |
12 | ″ | schema:keywords | Carlo method |
13 | ″ | ″ | Monte Carlo method |
14 | ″ | ″ | Wigner Monte Carlo method |
15 | ″ | ″ | Wigner equation |
16 | ″ | ″ | annihilation |
17 | ″ | ″ | annihilation step |
18 | ″ | ″ | cells |
19 | ″ | ″ | concept |
20 | ″ | ″ | diffusion |
21 | ″ | ″ | distribution |
22 | ″ | ″ | domain |
23 | ″ | ″ | effect |
24 | ″ | ″ | efficient manner |
25 | ″ | ″ | equations |
26 | ″ | ″ | exponential growth |
27 | ″ | ″ | generation |
28 | ″ | ″ | growth |
29 | ″ | ″ | indistinguishable particles |
30 | ″ | ″ | information |
31 | ″ | ″ | less number |
32 | ″ | ″ | manner |
33 | ″ | ″ | method |
34 | ″ | ″ | momentum values |
35 | ″ | ″ | multi-dimensional solutions |
36 | ″ | ″ | number |
37 | ″ | ″ | number of particles |
38 | ″ | ″ | numerical diffusion |
39 | ″ | ″ | particles |
40 | ″ | ″ | position |
41 | ″ | ″ | process |
42 | ″ | ″ | process of regeneration |
43 | ″ | ″ | regenerated particles |
44 | ″ | ″ | regeneration |
45 | ″ | ″ | regeneration scheme |
46 | ″ | ″ | same information |
47 | ″ | ″ | scheme |
48 | ″ | ″ | simple uniform distribution |
49 | ″ | ″ | solution |
50 | ″ | ″ | spatial domain |
51 | ″ | ″ | step |
52 | ″ | ″ | uniform distribution |
53 | ″ | ″ | values |
54 | ″ | schema:name | Optimized Particle Regeneration Scheme for the Wigner Monte Carlo Method |
55 | ″ | schema:pagination | 27-33 |
56 | ″ | schema:productId | Na459aa0a28974e048dcef90db05cab9a |
57 | ″ | ″ | Ne04e9b99b46947f3ac9248503ea033af |
58 | ″ | schema:publisher | N40c8c5d9e6b5435799fe3764a0ba6e2e |
59 | ″ | schema:sameAs | https://app.dimensions.ai/details/publication/pub.1030593658 |
60 | ″ | ″ | https://doi.org/10.1007/978-3-319-15585-2_3 |
61 | ″ | schema:sdDatePublished | 2022-05-10T10:55 |
62 | ″ | schema:sdLicense | https://scigraph.springernature.com/explorer/license/ |
63 | ″ | schema:sdPublisher | N221f4e9f0b464429abfdb42dd3fed008 |
64 | ″ | schema:url | https://doi.org/10.1007/978-3-319-15585-2_3 |
65 | ″ | sgo:license | sg:explorer/license/ |
66 | ″ | sgo:sdDataset | chapters |
67 | ″ | rdf:type | schema:Chapter |
68 | N14f5554e512743c28aea319c4225f4d5 | schema:familyName | Dimov |
69 | ″ | schema:givenName | Ivan |
70 | ″ | rdf:type | schema:Person |
71 | N169794036bab45ec878845eaead188c8 | rdf:first | Nf7a4c9dada9f48cfb86513ec0cdf544f |
72 | ″ | rdf:rest | rdf:nil |
73 | N221f4e9f0b464429abfdb42dd3fed008 | schema:name | Springer Nature - SN SciGraph project |
74 | ″ | rdf:type | schema:Organization |
75 | N40c8c5d9e6b5435799fe3764a0ba6e2e | schema:name | Springer Nature |
76 | ″ | rdf:type | schema:Organisation |
77 | N4795a6c4771f47b1ad4c9d49540677a1 | rdf:first | N14f5554e512743c28aea319c4225f4d5 |
78 | ″ | rdf:rest | Nc23a2038b84240bb83e32dc391d198ff |
79 | N56cfcf978a2742bba74b794720bc2a86 | schema:familyName | Fidanova |
80 | ″ | schema:givenName | Stefka |
81 | ″ | rdf:type | schema:Person |
82 | N8667682af5dd4b7fad3e4797ef6b26cf | schema:isbn | 978-3-319-15584-5 |
83 | ″ | ″ | 978-3-319-15585-2 |
84 | ″ | schema:name | Numerical Methods and Applications |
85 | ″ | rdf:type | schema:Book |
86 | N945dd76fcc8048ecbf99ee647b81c5f8 | rdf:first | sg:person.013033344117.92 |
87 | ″ | rdf:rest | rdf:nil |
88 | Na459aa0a28974e048dcef90db05cab9a | schema:name | doi |
89 | ″ | schema:value | 10.1007/978-3-319-15585-2_3 |
90 | ″ | rdf:type | schema:PropertyValue |
91 | Nae15141afc9c4a2e979983ec2475a738 | rdf:first | sg:person.011142023427.48 |
92 | ″ | rdf:rest | N945dd76fcc8048ecbf99ee647b81c5f8 |
93 | Nc23a2038b84240bb83e32dc391d198ff | rdf:first | N56cfcf978a2742bba74b794720bc2a86 |
94 | ″ | rdf:rest | N169794036bab45ec878845eaead188c8 |
95 | Ncdac2bdca64a49c18c3b0f3c7371fb41 | rdf:first | sg:person.016442755635.85 |
96 | ″ | rdf:rest | Nae15141afc9c4a2e979983ec2475a738 |
97 | Ne04e9b99b46947f3ac9248503ea033af | schema:name | dimensions_id |
98 | ″ | schema:value | pub.1030593658 |
99 | ″ | rdf:type | schema:PropertyValue |
100 | Nf7a4c9dada9f48cfb86513ec0cdf544f | schema:familyName | Lirkov |
101 | ″ | schema:givenName | Ivan |
102 | ″ | rdf:type | schema:Person |
103 | anzsrc-for:09 | schema:inDefinedTermSet | anzsrc-for: |
104 | ″ | schema:name | Engineering |
105 | ″ | rdf:type | schema:DefinedTerm |
106 | anzsrc-for:0904 | schema:inDefinedTermSet | anzsrc-for: |
107 | ″ | schema:name | Chemical Engineering |
108 | ″ | rdf:type | schema:DefinedTerm |
109 | sg:person.011142023427.48 | schema:affiliation | grid-institutes:grid.5329.d |
110 | ″ | schema:familyName | Nedjalkov |
111 | ″ | schema:givenName | Mihail |
112 | ″ | schema:sameAs | https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011142023427.48 |
113 | ″ | rdf:type | schema:Person |
114 | sg:person.013033344117.92 | schema:affiliation | grid-institutes:grid.5329.d |
115 | ″ | schema:familyName | Selberherr |
116 | ″ | schema:givenName | Siegfried |
117 | ″ | schema:sameAs | https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013033344117.92 |
118 | ″ | rdf:type | schema:Person |
119 | sg:person.016442755635.85 | schema:affiliation | grid-institutes:grid.5329.d |
120 | ″ | schema:familyName | Ellinghaus |
121 | ″ | schema:givenName | Paul |
122 | ″ | schema:sameAs | https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016442755635.85 |
123 | ″ | rdf:type | schema:Person |
124 | grid-institutes:grid.5329.d | schema:alternateName | Institute for Microelectronics, TU Wien, Vienna, Austria |
125 | ″ | schema:name | Institute for Microelectronics, TU Wien, Vienna, Austria |
126 | ″ | rdf:type | schema:Organization |