Optimized Particle Regeneration Scheme for the Wigner Monte Carlo Method View Full Text


Ontology type: schema:Chapter     


Chapter Info

DATE

2015-02-04

AUTHORS

Paul Ellinghaus , Mihail Nedjalkov , Siegfried Selberherr

ABSTRACT

The signed-particle Monte Carlo method for solving the Wigner equation has made multi-dimensional solutions numerically feasible. The latter is attributable to the concept of annihilation of independent indistinguishable particles, which counteracts the exponential growth in the number of particles due to generation. After the annihilation step, the particles regenerated within each cell of the phase-space should replicate the same information as before the annihilation, albeit with a lesser number of particles. Since the semi-discrete Wigner equation allows only discrete momentum values, this information can be retained with regeneration, however, the position of the regenerated particles in the cell must be chosen wisely. A simple uniform distribution over the spatial domain represented by the cell introduces a ‘numerical diffusion’ which artificially propagates particles simply through the process of regeneration. An optimized regeneration scheme is proposed, which counteracts this effect of ‘numerical diffusion’ in an efficient manner. More... »

PAGES

27-33

Book

TITLE

Numerical Methods and Applications

ISBN

978-3-319-15584-5
978-3-319-15585-2

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/978-3-319-15585-2_3

DOI

http://dx.doi.org/10.1007/978-3-319-15585-2_3

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1030593658


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/09", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Engineering", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0904", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Chemical Engineering", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Institute for Microelectronics, TU Wien, Vienna, Austria", 
          "id": "http://www.grid.ac/institutes/grid.5329.d", 
          "name": [
            "Institute for Microelectronics, TU Wien, Vienna, Austria"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Ellinghaus", 
        "givenName": "Paul", 
        "id": "sg:person.016442755635.85", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016442755635.85"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Institute for Microelectronics, TU Wien, Vienna, Austria", 
          "id": "http://www.grid.ac/institutes/grid.5329.d", 
          "name": [
            "Institute for Microelectronics, TU Wien, Vienna, Austria"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Nedjalkov", 
        "givenName": "Mihail", 
        "id": "sg:person.011142023427.48", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011142023427.48"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Institute for Microelectronics, TU Wien, Vienna, Austria", 
          "id": "http://www.grid.ac/institutes/grid.5329.d", 
          "name": [
            "Institute for Microelectronics, TU Wien, Vienna, Austria"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Selberherr", 
        "givenName": "Siegfried", 
        "id": "sg:person.013033344117.92", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013033344117.92"
        ], 
        "type": "Person"
      }
    ], 
    "datePublished": "2015-02-04", 
    "datePublishedReg": "2015-02-04", 
    "description": "The signed-particle Monte Carlo method for solving the Wigner equation has made multi-dimensional solutions numerically feasible. The latter is attributable to the concept of annihilation of independent indistinguishable particles, which counteracts the exponential growth in the number of particles due to generation. After the annihilation step, the particles regenerated within each cell of the phase-space should replicate the same information as before the annihilation, albeit with a lesser number of particles. Since the semi-discrete Wigner equation allows only discrete momentum values, this information can be retained with regeneration, however, the position of the regenerated particles in the cell must be chosen wisely. A simple uniform distribution over the spatial domain represented by the cell introduces a \u2018numerical diffusion\u2019 which artificially propagates particles simply through the process of regeneration. An optimized regeneration scheme is proposed, which counteracts this effect of \u2018numerical diffusion\u2019 in an efficient manner.", 
    "editor": [
      {
        "familyName": "Dimov", 
        "givenName": "Ivan", 
        "type": "Person"
      }, 
      {
        "familyName": "Fidanova", 
        "givenName": "Stefka", 
        "type": "Person"
      }, 
      {
        "familyName": "Lirkov", 
        "givenName": "Ivan", 
        "type": "Person"
      }
    ], 
    "genre": "chapter", 
    "id": "sg:pub.10.1007/978-3-319-15585-2_3", 
    "inLanguage": "en", 
    "isAccessibleForFree": false, 
    "isPartOf": {
      "isbn": [
        "978-3-319-15584-5", 
        "978-3-319-15585-2"
      ], 
      "name": "Numerical Methods and Applications", 
      "type": "Book"
    }, 
    "keywords": [
      "Monte Carlo method", 
      "Wigner equation", 
      "numerical diffusion", 
      "Carlo method", 
      "Wigner Monte Carlo method", 
      "multi-dimensional solutions", 
      "indistinguishable particles", 
      "number of particles", 
      "equations", 
      "momentum values", 
      "simple uniform distribution", 
      "spatial domain", 
      "efficient manner", 
      "scheme", 
      "less number", 
      "regenerated particles", 
      "uniform distribution", 
      "annihilation", 
      "particles", 
      "diffusion", 
      "exponential growth", 
      "solution", 
      "same information", 
      "regeneration scheme", 
      "number", 
      "distribution", 
      "information", 
      "method", 
      "concept", 
      "domain", 
      "step", 
      "position", 
      "values", 
      "generation", 
      "regeneration", 
      "process", 
      "process of regeneration", 
      "manner", 
      "effect", 
      "growth", 
      "cells", 
      "annihilation step"
    ], 
    "name": "Optimized Particle Regeneration Scheme for the Wigner Monte Carlo Method", 
    "pagination": "27-33", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1030593658"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/978-3-319-15585-2_3"
        ]
      }
    ], 
    "publisher": {
      "name": "Springer Nature", 
      "type": "Organisation"
    }, 
    "sameAs": [
      "https://doi.org/10.1007/978-3-319-15585-2_3", 
      "https://app.dimensions.ai/details/publication/pub.1030593658"
    ], 
    "sdDataset": "chapters", 
    "sdDatePublished": "2022-05-10T10:55", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20220509/entities/gbq_results/chapter/chapter_56.jsonl", 
    "type": "Chapter", 
    "url": "https://doi.org/10.1007/978-3-319-15585-2_3"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/978-3-319-15585-2_3'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/978-3-319-15585-2_3'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/978-3-319-15585-2_3'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/978-3-319-15585-2_3'


 

This table displays all metadata directly associated to this object as RDF triples.

126 TRIPLES      23 PREDICATES      67 URIs      60 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/978-3-319-15585-2_3 schema:about anzsrc-for:09
2 anzsrc-for:0904
3 schema:author Ncdac2bdca64a49c18c3b0f3c7371fb41
4 schema:datePublished 2015-02-04
5 schema:datePublishedReg 2015-02-04
6 schema:description The signed-particle Monte Carlo method for solving the Wigner equation has made multi-dimensional solutions numerically feasible. The latter is attributable to the concept of annihilation of independent indistinguishable particles, which counteracts the exponential growth in the number of particles due to generation. After the annihilation step, the particles regenerated within each cell of the phase-space should replicate the same information as before the annihilation, albeit with a lesser number of particles. Since the semi-discrete Wigner equation allows only discrete momentum values, this information can be retained with regeneration, however, the position of the regenerated particles in the cell must be chosen wisely. A simple uniform distribution over the spatial domain represented by the cell introduces a ‘numerical diffusion’ which artificially propagates particles simply through the process of regeneration. An optimized regeneration scheme is proposed, which counteracts this effect of ‘numerical diffusion’ in an efficient manner.
7 schema:editor N4795a6c4771f47b1ad4c9d49540677a1
8 schema:genre chapter
9 schema:inLanguage en
10 schema:isAccessibleForFree false
11 schema:isPartOf N8667682af5dd4b7fad3e4797ef6b26cf
12 schema:keywords Carlo method
13 Monte Carlo method
14 Wigner Monte Carlo method
15 Wigner equation
16 annihilation
17 annihilation step
18 cells
19 concept
20 diffusion
21 distribution
22 domain
23 effect
24 efficient manner
25 equations
26 exponential growth
27 generation
28 growth
29 indistinguishable particles
30 information
31 less number
32 manner
33 method
34 momentum values
35 multi-dimensional solutions
36 number
37 number of particles
38 numerical diffusion
39 particles
40 position
41 process
42 process of regeneration
43 regenerated particles
44 regeneration
45 regeneration scheme
46 same information
47 scheme
48 simple uniform distribution
49 solution
50 spatial domain
51 step
52 uniform distribution
53 values
54 schema:name Optimized Particle Regeneration Scheme for the Wigner Monte Carlo Method
55 schema:pagination 27-33
56 schema:productId Na459aa0a28974e048dcef90db05cab9a
57 Ne04e9b99b46947f3ac9248503ea033af
58 schema:publisher N40c8c5d9e6b5435799fe3764a0ba6e2e
59 schema:sameAs https://app.dimensions.ai/details/publication/pub.1030593658
60 https://doi.org/10.1007/978-3-319-15585-2_3
61 schema:sdDatePublished 2022-05-10T10:55
62 schema:sdLicense https://scigraph.springernature.com/explorer/license/
63 schema:sdPublisher N221f4e9f0b464429abfdb42dd3fed008
64 schema:url https://doi.org/10.1007/978-3-319-15585-2_3
65 sgo:license sg:explorer/license/
66 sgo:sdDataset chapters
67 rdf:type schema:Chapter
68 N14f5554e512743c28aea319c4225f4d5 schema:familyName Dimov
69 schema:givenName Ivan
70 rdf:type schema:Person
71 N169794036bab45ec878845eaead188c8 rdf:first Nf7a4c9dada9f48cfb86513ec0cdf544f
72 rdf:rest rdf:nil
73 N221f4e9f0b464429abfdb42dd3fed008 schema:name Springer Nature - SN SciGraph project
74 rdf:type schema:Organization
75 N40c8c5d9e6b5435799fe3764a0ba6e2e schema:name Springer Nature
76 rdf:type schema:Organisation
77 N4795a6c4771f47b1ad4c9d49540677a1 rdf:first N14f5554e512743c28aea319c4225f4d5
78 rdf:rest Nc23a2038b84240bb83e32dc391d198ff
79 N56cfcf978a2742bba74b794720bc2a86 schema:familyName Fidanova
80 schema:givenName Stefka
81 rdf:type schema:Person
82 N8667682af5dd4b7fad3e4797ef6b26cf schema:isbn 978-3-319-15584-5
83 978-3-319-15585-2
84 schema:name Numerical Methods and Applications
85 rdf:type schema:Book
86 N945dd76fcc8048ecbf99ee647b81c5f8 rdf:first sg:person.013033344117.92
87 rdf:rest rdf:nil
88 Na459aa0a28974e048dcef90db05cab9a schema:name doi
89 schema:value 10.1007/978-3-319-15585-2_3
90 rdf:type schema:PropertyValue
91 Nae15141afc9c4a2e979983ec2475a738 rdf:first sg:person.011142023427.48
92 rdf:rest N945dd76fcc8048ecbf99ee647b81c5f8
93 Nc23a2038b84240bb83e32dc391d198ff rdf:first N56cfcf978a2742bba74b794720bc2a86
94 rdf:rest N169794036bab45ec878845eaead188c8
95 Ncdac2bdca64a49c18c3b0f3c7371fb41 rdf:first sg:person.016442755635.85
96 rdf:rest Nae15141afc9c4a2e979983ec2475a738
97 Ne04e9b99b46947f3ac9248503ea033af schema:name dimensions_id
98 schema:value pub.1030593658
99 rdf:type schema:PropertyValue
100 Nf7a4c9dada9f48cfb86513ec0cdf544f schema:familyName Lirkov
101 schema:givenName Ivan
102 rdf:type schema:Person
103 anzsrc-for:09 schema:inDefinedTermSet anzsrc-for:
104 schema:name Engineering
105 rdf:type schema:DefinedTerm
106 anzsrc-for:0904 schema:inDefinedTermSet anzsrc-for:
107 schema:name Chemical Engineering
108 rdf:type schema:DefinedTerm
109 sg:person.011142023427.48 schema:affiliation grid-institutes:grid.5329.d
110 schema:familyName Nedjalkov
111 schema:givenName Mihail
112 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011142023427.48
113 rdf:type schema:Person
114 sg:person.013033344117.92 schema:affiliation grid-institutes:grid.5329.d
115 schema:familyName Selberherr
116 schema:givenName Siegfried
117 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013033344117.92
118 rdf:type schema:Person
119 sg:person.016442755635.85 schema:affiliation grid-institutes:grid.5329.d
120 schema:familyName Ellinghaus
121 schema:givenName Paul
122 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016442755635.85
123 rdf:type schema:Person
124 grid-institutes:grid.5329.d schema:alternateName Institute for Microelectronics, TU Wien, Vienna, Austria
125 schema:name Institute for Microelectronics, TU Wien, Vienna, Austria
126 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...