Host Trait Prediction of Metagenomic Data for Topology-Based Visualization View Full Text


Ontology type: schema:Chapter     


Chapter Info

DATE

2015

AUTHORS

Laxmi Parida , Niina Haiminen , David Haws , Jan Suchodolski

ABSTRACT

Microbiome and metagenomic research continues to grow as well as the size and complexity of the collected data. Additionally, it is understood that the microbiome can have a complex relationship with the environment or host it inhabits, such as in gastrointestinal disease. The goal of this study is to accurately predict a host’s trait using only metagenomic data, by training a statistical model on available metagenome sequencing data. We compare a traditional Support Vector Regression approach to a new non-parametric method developed here, called PKEM, which uses dimensionality reduction combined with Kernel Density Estimation. The results are visualized using methods from Topological Data Analysis. Such representations assist in understanding how the data organizes and can lead to new insights. We apply this visualization-of-prediction technique to cat, dog and human microbiome obtained from fecal samples. In the first two the host trait is irritable bowel syndrome while in the last the host trait is Kwashiorkor, a form of severe malnutrition. More... »

PAGES

134-149

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/978-3-319-14977-6_8

DOI

http://dx.doi.org/10.1007/978-3-319-14977-6_8

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1000754514


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/01", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Mathematical Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0104", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Statistics", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Computational Biology Center, IBM T.J. Watson Research, Yorktown Heights, NY, USA", 
          "id": "http://www.grid.ac/institutes/None", 
          "name": [
            "Computational Biology Center, IBM T.J. Watson Research, Yorktown Heights, NY, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Parida", 
        "givenName": "Laxmi", 
        "id": "sg:person.01336557015.68", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01336557015.68"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Computational Biology Center, IBM T.J. Watson Research, Yorktown Heights, NY, USA", 
          "id": "http://www.grid.ac/institutes/None", 
          "name": [
            "Computational Biology Center, IBM T.J. Watson Research, Yorktown Heights, NY, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Haiminen", 
        "givenName": "Niina", 
        "id": "sg:person.0746114007.76", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0746114007.76"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Computational Biology Center, IBM T.J. Watson Research, Yorktown Heights, NY, USA", 
          "id": "http://www.grid.ac/institutes/None", 
          "name": [
            "Computational Biology Center, IBM T.J. Watson Research, Yorktown Heights, NY, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Haws", 
        "givenName": "David", 
        "id": "sg:person.0775654646.82", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0775654646.82"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Veterinary Medicine & Biomedical Sciences, Texas A&M University, College Station, TX, USA", 
          "id": "http://www.grid.ac/institutes/grid.264756.4", 
          "name": [
            "Veterinary Medicine & Biomedical Sciences, Texas A&M University, College Station, TX, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Suchodolski", 
        "givenName": "Jan", 
        "id": "sg:person.0741107142.87", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0741107142.87"
        ], 
        "type": "Person"
      }
    ], 
    "datePublished": "2015", 
    "datePublishedReg": "2015-01-01", 
    "description": "Microbiome and metagenomic research continues to grow as well as the size and complexity of the collected data. Additionally, it is understood that the microbiome can have a complex relationship with the environment or host it inhabits, such as in gastrointestinal disease. The goal of this study is to accurately predict a host\u2019s trait using only metagenomic data, by training a statistical model on available metagenome sequencing data. We compare a traditional Support Vector Regression approach to a new non-parametric method developed here, called PKEM, which uses dimensionality reduction combined with Kernel Density Estimation. The results are visualized using methods from Topological Data Analysis. Such representations assist in understanding how the data organizes and can lead to new insights. We apply this visualization-of-prediction technique to cat, dog and human microbiome obtained from fecal samples. In the first two the host trait is irritable bowel syndrome while in the last the host trait is Kwashiorkor, a form of severe malnutrition.", 
    "editor": [
      {
        "familyName": "Natarajan", 
        "givenName": "Raja", 
        "type": "Person"
      }, 
      {
        "familyName": "Barua", 
        "givenName": "Gautam", 
        "type": "Person"
      }, 
      {
        "familyName": "Patra", 
        "givenName": "Manas Ranjan", 
        "type": "Person"
      }
    ], 
    "genre": "chapter", 
    "id": "sg:pub.10.1007/978-3-319-14977-6_8", 
    "isAccessibleForFree": false, 
    "isPartOf": {
      "isbn": [
        "978-3-319-14976-9", 
        "978-3-319-14977-6"
      ], 
      "name": "Distributed Computing and Internet Technology", 
      "type": "Book"
    }, 
    "keywords": [
      "host traits", 
      "traits", 
      "trait prediction", 
      "fecal samples", 
      "new non-parametric method", 
      "irritable bowel syndrome", 
      "bowel syndrome", 
      "severe malnutrition", 
      "microbiome", 
      "gastrointestinal diseases", 
      "support vector regression approach", 
      "topological data analysis", 
      "host", 
      "statistical model", 
      "vector regression approach", 
      "dimensionality reduction", 
      "kernel density estimation", 
      "prediction techniques", 
      "dogs", 
      "metagenomic data", 
      "metagenome sequencing data", 
      "sequencing data", 
      "regression approach", 
      "non-parametric methods", 
      "density estimation", 
      "cats", 
      "human microbiome", 
      "metagenomic research", 
      "complex relationship", 
      "disease", 
      "such representations", 
      "syndrome", 
      "kwashiorkor", 
      "malnutrition", 
      "environment", 
      "data analysis", 
      "visualization", 
      "complexity", 
      "data", 
      "reduction", 
      "estimation", 
      "new insights", 
      "topology", 
      "research", 
      "size", 
      "relationship", 
      "goal", 
      "study", 
      "model", 
      "method", 
      "representation", 
      "approach", 
      "results", 
      "analysis", 
      "insights", 
      "technique", 
      "samples", 
      "prediction", 
      "form"
    ], 
    "name": "Host Trait Prediction of Metagenomic Data for Topology-Based Visualization", 
    "pagination": "134-149", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1000754514"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/978-3-319-14977-6_8"
        ]
      }
    ], 
    "publisher": {
      "name": "Springer Nature", 
      "type": "Organisation"
    }, 
    "sameAs": [
      "https://doi.org/10.1007/978-3-319-14977-6_8", 
      "https://app.dimensions.ai/details/publication/pub.1000754514"
    ], 
    "sdDataset": "chapters", 
    "sdDatePublished": "2022-10-01T06:54", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20221001/entities/gbq_results/chapter/chapter_230.jsonl", 
    "type": "Chapter", 
    "url": "https://doi.org/10.1007/978-3-319-14977-6_8"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/978-3-319-14977-6_8'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/978-3-319-14977-6_8'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/978-3-319-14977-6_8'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/978-3-319-14977-6_8'


 

This table displays all metadata directly associated to this object as RDF triples.

152 TRIPLES      22 PREDICATES      84 URIs      77 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/978-3-319-14977-6_8 schema:about anzsrc-for:01
2 anzsrc-for:0104
3 schema:author N1c96970774df4fa19f47a072ce4220f2
4 schema:datePublished 2015
5 schema:datePublishedReg 2015-01-01
6 schema:description Microbiome and metagenomic research continues to grow as well as the size and complexity of the collected data. Additionally, it is understood that the microbiome can have a complex relationship with the environment or host it inhabits, such as in gastrointestinal disease. The goal of this study is to accurately predict a host’s trait using only metagenomic data, by training a statistical model on available metagenome sequencing data. We compare a traditional Support Vector Regression approach to a new non-parametric method developed here, called PKEM, which uses dimensionality reduction combined with Kernel Density Estimation. The results are visualized using methods from Topological Data Analysis. Such representations assist in understanding how the data organizes and can lead to new insights. We apply this visualization-of-prediction technique to cat, dog and human microbiome obtained from fecal samples. In the first two the host trait is irritable bowel syndrome while in the last the host trait is Kwashiorkor, a form of severe malnutrition.
7 schema:editor Ncfc9cde2f8a34689ab9eb6a8eca5e958
8 schema:genre chapter
9 schema:isAccessibleForFree false
10 schema:isPartOf N09c7fdf6c99245d7be82e01418db2ab6
11 schema:keywords analysis
12 approach
13 bowel syndrome
14 cats
15 complex relationship
16 complexity
17 data
18 data analysis
19 density estimation
20 dimensionality reduction
21 disease
22 dogs
23 environment
24 estimation
25 fecal samples
26 form
27 gastrointestinal diseases
28 goal
29 host
30 host traits
31 human microbiome
32 insights
33 irritable bowel syndrome
34 kernel density estimation
35 kwashiorkor
36 malnutrition
37 metagenome sequencing data
38 metagenomic data
39 metagenomic research
40 method
41 microbiome
42 model
43 new insights
44 new non-parametric method
45 non-parametric methods
46 prediction
47 prediction techniques
48 reduction
49 regression approach
50 relationship
51 representation
52 research
53 results
54 samples
55 sequencing data
56 severe malnutrition
57 size
58 statistical model
59 study
60 such representations
61 support vector regression approach
62 syndrome
63 technique
64 topological data analysis
65 topology
66 trait prediction
67 traits
68 vector regression approach
69 visualization
70 schema:name Host Trait Prediction of Metagenomic Data for Topology-Based Visualization
71 schema:pagination 134-149
72 schema:productId Na7d2382c80c5441ca17d83617cf0f594
73 Nbd39811d8ad5437aaee047f931751b7b
74 schema:publisher N4475b5b6d1ad48549feafd5bf7a7e4db
75 schema:sameAs https://app.dimensions.ai/details/publication/pub.1000754514
76 https://doi.org/10.1007/978-3-319-14977-6_8
77 schema:sdDatePublished 2022-10-01T06:54
78 schema:sdLicense https://scigraph.springernature.com/explorer/license/
79 schema:sdPublisher N6c9fcbf5b1ed47bb9eb1bc78d35cde50
80 schema:url https://doi.org/10.1007/978-3-319-14977-6_8
81 sgo:license sg:explorer/license/
82 sgo:sdDataset chapters
83 rdf:type schema:Chapter
84 N09c7fdf6c99245d7be82e01418db2ab6 schema:isbn 978-3-319-14976-9
85 978-3-319-14977-6
86 schema:name Distributed Computing and Internet Technology
87 rdf:type schema:Book
88 N0a931cbdafdb47ef82be5109a27153eb rdf:first sg:person.0741107142.87
89 rdf:rest rdf:nil
90 N1c96970774df4fa19f47a072ce4220f2 rdf:first sg:person.01336557015.68
91 rdf:rest Neec6385a92094298a070631e4d0ca260
92 N3e42925ad30543ef8228f7be6699ab73 schema:familyName Natarajan
93 schema:givenName Raja
94 rdf:type schema:Person
95 N4475b5b6d1ad48549feafd5bf7a7e4db schema:name Springer Nature
96 rdf:type schema:Organisation
97 N6c9fcbf5b1ed47bb9eb1bc78d35cde50 schema:name Springer Nature - SN SciGraph project
98 rdf:type schema:Organization
99 N88c295d5daa04b98b072f53fe4182b78 rdf:first sg:person.0775654646.82
100 rdf:rest N0a931cbdafdb47ef82be5109a27153eb
101 N9d9009fdea254fdb8d1a18305566fb13 rdf:first Nbf4bbe25c6e442559f5aab5bf8dfe66b
102 rdf:rest rdf:nil
103 N9e914b19e4444c329bef64e1c81e90ac rdf:first Nffd4084c8942411da136856f0700ee75
104 rdf:rest N9d9009fdea254fdb8d1a18305566fb13
105 Na7d2382c80c5441ca17d83617cf0f594 schema:name doi
106 schema:value 10.1007/978-3-319-14977-6_8
107 rdf:type schema:PropertyValue
108 Nbd39811d8ad5437aaee047f931751b7b schema:name dimensions_id
109 schema:value pub.1000754514
110 rdf:type schema:PropertyValue
111 Nbf4bbe25c6e442559f5aab5bf8dfe66b schema:familyName Patra
112 schema:givenName Manas Ranjan
113 rdf:type schema:Person
114 Ncfc9cde2f8a34689ab9eb6a8eca5e958 rdf:first N3e42925ad30543ef8228f7be6699ab73
115 rdf:rest N9e914b19e4444c329bef64e1c81e90ac
116 Neec6385a92094298a070631e4d0ca260 rdf:first sg:person.0746114007.76
117 rdf:rest N88c295d5daa04b98b072f53fe4182b78
118 Nffd4084c8942411da136856f0700ee75 schema:familyName Barua
119 schema:givenName Gautam
120 rdf:type schema:Person
121 anzsrc-for:01 schema:inDefinedTermSet anzsrc-for:
122 schema:name Mathematical Sciences
123 rdf:type schema:DefinedTerm
124 anzsrc-for:0104 schema:inDefinedTermSet anzsrc-for:
125 schema:name Statistics
126 rdf:type schema:DefinedTerm
127 sg:person.01336557015.68 schema:affiliation grid-institutes:None
128 schema:familyName Parida
129 schema:givenName Laxmi
130 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01336557015.68
131 rdf:type schema:Person
132 sg:person.0741107142.87 schema:affiliation grid-institutes:grid.264756.4
133 schema:familyName Suchodolski
134 schema:givenName Jan
135 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0741107142.87
136 rdf:type schema:Person
137 sg:person.0746114007.76 schema:affiliation grid-institutes:None
138 schema:familyName Haiminen
139 schema:givenName Niina
140 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0746114007.76
141 rdf:type schema:Person
142 sg:person.0775654646.82 schema:affiliation grid-institutes:None
143 schema:familyName Haws
144 schema:givenName David
145 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0775654646.82
146 rdf:type schema:Person
147 grid-institutes:None schema:alternateName Computational Biology Center, IBM T.J. Watson Research, Yorktown Heights, NY, USA
148 schema:name Computational Biology Center, IBM T.J. Watson Research, Yorktown Heights, NY, USA
149 rdf:type schema:Organization
150 grid-institutes:grid.264756.4 schema:alternateName Veterinary Medicine & Biomedical Sciences, Texas A&M University, College Station, TX, USA
151 schema:name Veterinary Medicine & Biomedical Sciences, Texas A&M University, College Station, TX, USA
152 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...