Quantum Behaved Genetic Algorithm: Constraints-Handling and GPU Computing View Full Text


Ontology type: schema:Chapter     


Chapter Info

DATE

2015

AUTHORS

Amgad M. Mohammed , N. A. Elhefnawy , Mahmoud M. El-Sherbiny , Mohiy M. Hadhoud

ABSTRACT

Quantum-inspired evolutionary algorithm is a new evolutionary algorithm using concepts and principles of quantum computing to work on classical computer rather than quantum mechanical hardware. This article introduces main concepts behind the intersection between evolutionary algorithms and quantum computing, such as quantum-bit, superposition feature, quantum gate, quantum measurement and quantum interference. These behaviors of quantum concepts offer computational power and computational intelligence that must be harnessed and used. Intelligence is the main focus to design novel constraint-handling technique with quantum behaved genetic algorithm (QBGA) to solve well known constrained benchmark problems. Single quantum chromosome represents multiple solutions at the same time, so the same infeasible solutions based on quantum features are also feasible ones. Finally GPU (Graphics Processing Unit) will be discussed with (QBGA) to achieve parallel processing and speed up execution time, especially to solve high dimensional real world optimization problems requiring intensive computing resources. More... »

PAGES

243-259

References to SciGraph publications

Book

TITLE

Intelligent Systems in Science and Information 2014

ISBN

978-3-319-14653-9
978-3-319-14654-6

Author Affiliations

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/978-3-319-14654-6_15

DOI

http://dx.doi.org/10.1007/978-3-319-14654-6_15

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1000577323


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0802", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Computation Theory and Mathematics", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/08", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Information and Computing Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Menoufia University", 
          "id": "https://www.grid.ac/institutes/grid.411775.1", 
          "name": [
            "Department of Operations Research, Menofia University, Menofia, Egypt"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Mohammed", 
        "givenName": "Amgad M.", 
        "id": "sg:person.010655066717.27", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010655066717.27"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Menoufia University", 
          "id": "https://www.grid.ac/institutes/grid.411775.1", 
          "name": [
            "Department of Operations Research, Menofia University, Menofia, Egypt"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Elhefnawy", 
        "givenName": "N. A.", 
        "id": "sg:person.015235731717.81", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015235731717.81"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "name": [
            "Department of Operations Research, Institute of Statistical Studies and Research, Giza, Egypt"
          ], 
          "type": "Organization"
        }, 
        "familyName": "El-Sherbiny", 
        "givenName": "Mahmoud M.", 
        "id": "sg:person.012316143117.13", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012316143117.13"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Menoufia University", 
          "id": "https://www.grid.ac/institutes/grid.411775.1", 
          "name": [
            "Department of Information Technology, Menofia University, Menofia, Egypt"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Hadhoud", 
        "givenName": "Mohiy M.", 
        "id": "sg:person.016101425517.34", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016101425517.34"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1016/j.cor.2005.02.002", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1001753574"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.cma.2005.09.006", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1006889987"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/11539902_17", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1023649751", 
          "https://doi.org/10.1007/11539902_17"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/11539902_17", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1023649751", 
          "https://doi.org/10.1007/11539902_17"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-1-84628-887-6", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1027621148", 
          "https://doi.org/10.1007/978-1-84628-887-6"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-1-84628-887-6", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1027621148", 
          "https://doi.org/10.1007/978-1-84628-887-6"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.cma.2004.09.007", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1029129153"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0045-7825(99)00389-8", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1029969435"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.asoc.2012.11.026", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1046513898"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/11539902_134", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1046697086", 
          "https://doi.org/10.1007/11539902_134"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/11539902_134", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1046697086", 
          "https://doi.org/10.1007/11539902_134"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/4235.873238", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061172057"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/tevc.2002.804320", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061604563"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/tevc.2004.823467", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061604618"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/tevc.2007.905006", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061604820"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1145/882262.882363", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1063173586"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1177/003754979406200405", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1063684977"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1177/003754979406200405", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1063684977"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1177/003754979506400605", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1063685053"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1177/003754979506400605", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1063685053"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/sai.2014.6918202", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1093257768"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2015", 
    "datePublishedReg": "2015-01-01", 
    "description": "Quantum-inspired evolutionary algorithm is a new evolutionary algorithm using concepts and principles of quantum computing to work on classical computer rather than quantum mechanical hardware. This article introduces main concepts behind the intersection between evolutionary algorithms and quantum computing, such as quantum-bit, superposition feature, quantum gate, quantum measurement and quantum interference. These behaviors of quantum concepts offer computational power and computational intelligence that must be harnessed and used. Intelligence is the main focus to design novel constraint-handling technique with quantum behaved genetic algorithm (QBGA) to solve well known constrained benchmark problems. Single quantum chromosome represents multiple solutions at the same time, so the same infeasible solutions based on quantum features are also feasible ones. Finally GPU (Graphics Processing Unit) will be discussed with (QBGA) to achieve parallel processing and speed up execution time, especially to solve high dimensional real world optimization problems requiring intensive computing resources.", 
    "editor": [
      {
        "familyName": "Arai", 
        "givenName": "Kohei", 
        "type": "Person"
      }, 
      {
        "familyName": "Kapoor", 
        "givenName": "Supriya", 
        "type": "Person"
      }, 
      {
        "familyName": "Bhatia", 
        "givenName": "Rahul", 
        "type": "Person"
      }
    ], 
    "genre": "chapter", 
    "id": "sg:pub.10.1007/978-3-319-14654-6_15", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": {
      "isbn": [
        "978-3-319-14653-9", 
        "978-3-319-14654-6"
      ], 
      "name": "Intelligent Systems in Science and Information 2014", 
      "type": "Book"
    }, 
    "name": "Quantum Behaved Genetic Algorithm: Constraints-Handling and GPU Computing", 
    "pagination": "243-259", 
    "productId": [
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/978-3-319-14654-6_15"
        ]
      }, 
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "02bfbf323234d4ae5887689734a729e5f3979c206e35768e6734a83dc5a279be"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1000577323"
        ]
      }
    ], 
    "publisher": {
      "location": "Cham", 
      "name": "Springer International Publishing", 
      "type": "Organisation"
    }, 
    "sameAs": [
      "https://doi.org/10.1007/978-3-319-14654-6_15", 
      "https://app.dimensions.ai/details/publication/pub.1000577323"
    ], 
    "sdDataset": "chapters", 
    "sdDatePublished": "2019-04-15T13:24", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8664_00000243.jsonl", 
    "type": "Chapter", 
    "url": "http://link.springer.com/10.1007/978-3-319-14654-6_15"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/978-3-319-14654-6_15'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/978-3-319-14654-6_15'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/978-3-319-14654-6_15'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/978-3-319-14654-6_15'


 

This table displays all metadata directly associated to this object as RDF triples.

150 TRIPLES      23 PREDICATES      43 URIs      20 LITERALS      8 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/978-3-319-14654-6_15 schema:about anzsrc-for:08
2 anzsrc-for:0802
3 schema:author N38bcdbeb0ffd4de4be69efe170cdf193
4 schema:citation sg:pub.10.1007/11539902_134
5 sg:pub.10.1007/11539902_17
6 sg:pub.10.1007/978-1-84628-887-6
7 https://doi.org/10.1016/j.asoc.2012.11.026
8 https://doi.org/10.1016/j.cma.2004.09.007
9 https://doi.org/10.1016/j.cma.2005.09.006
10 https://doi.org/10.1016/j.cor.2005.02.002
11 https://doi.org/10.1016/s0045-7825(99)00389-8
12 https://doi.org/10.1109/4235.873238
13 https://doi.org/10.1109/sai.2014.6918202
14 https://doi.org/10.1109/tevc.2002.804320
15 https://doi.org/10.1109/tevc.2004.823467
16 https://doi.org/10.1109/tevc.2007.905006
17 https://doi.org/10.1145/882262.882363
18 https://doi.org/10.1177/003754979406200405
19 https://doi.org/10.1177/003754979506400605
20 schema:datePublished 2015
21 schema:datePublishedReg 2015-01-01
22 schema:description Quantum-inspired evolutionary algorithm is a new evolutionary algorithm using concepts and principles of quantum computing to work on classical computer rather than quantum mechanical hardware. This article introduces main concepts behind the intersection between evolutionary algorithms and quantum computing, such as quantum-bit, superposition feature, quantum gate, quantum measurement and quantum interference. These behaviors of quantum concepts offer computational power and computational intelligence that must be harnessed and used. Intelligence is the main focus to design novel constraint-handling technique with quantum behaved genetic algorithm (QBGA) to solve well known constrained benchmark problems. Single quantum chromosome represents multiple solutions at the same time, so the same infeasible solutions based on quantum features are also feasible ones. Finally GPU (Graphics Processing Unit) will be discussed with (QBGA) to achieve parallel processing and speed up execution time, especially to solve high dimensional real world optimization problems requiring intensive computing resources.
23 schema:editor Nfcca66386cc144c5a3e6cf7b25f76b76
24 schema:genre chapter
25 schema:inLanguage en
26 schema:isAccessibleForFree false
27 schema:isPartOf Ndce26d1ff74940dfa9a491695e827711
28 schema:name Quantum Behaved Genetic Algorithm: Constraints-Handling and GPU Computing
29 schema:pagination 243-259
30 schema:productId N189bf453cedd4d8b9223c4f945c7c8ba
31 N528c41e045fb4f3f8cff51c467e36bf2
32 N84d3689d32d6492a991b91a1b5580bce
33 schema:publisher Ne14fe6b3f19140dbb57034ec64431e19
34 schema:sameAs https://app.dimensions.ai/details/publication/pub.1000577323
35 https://doi.org/10.1007/978-3-319-14654-6_15
36 schema:sdDatePublished 2019-04-15T13:24
37 schema:sdLicense https://scigraph.springernature.com/explorer/license/
38 schema:sdPublisher N3831587b37624e34bdbd7e410d24df80
39 schema:url http://link.springer.com/10.1007/978-3-319-14654-6_15
40 sgo:license sg:explorer/license/
41 sgo:sdDataset chapters
42 rdf:type schema:Chapter
43 N189bf453cedd4d8b9223c4f945c7c8ba schema:name readcube_id
44 schema:value 02bfbf323234d4ae5887689734a729e5f3979c206e35768e6734a83dc5a279be
45 rdf:type schema:PropertyValue
46 N1c5ef109587b4f69898c7b4d14017341 schema:familyName Kapoor
47 schema:givenName Supriya
48 rdf:type schema:Person
49 N3831587b37624e34bdbd7e410d24df80 schema:name Springer Nature - SN SciGraph project
50 rdf:type schema:Organization
51 N38bcdbeb0ffd4de4be69efe170cdf193 rdf:first sg:person.010655066717.27
52 rdf:rest Nbd303a436f544a25bd36b6d1496379c8
53 N3c57c6041e754fe1a60ae8a96eea90ec schema:familyName Arai
54 schema:givenName Kohei
55 rdf:type schema:Person
56 N528c41e045fb4f3f8cff51c467e36bf2 schema:name doi
57 schema:value 10.1007/978-3-319-14654-6_15
58 rdf:type schema:PropertyValue
59 N67aac2cd981844de8588d994cb6f9753 rdf:first N1c5ef109587b4f69898c7b4d14017341
60 rdf:rest Ne3820155a055484f918d4b6fa5d392d7
61 N6e316ca2860f44e7a10f6c61319fb002 schema:familyName Bhatia
62 schema:givenName Rahul
63 rdf:type schema:Person
64 N84d3689d32d6492a991b91a1b5580bce schema:name dimensions_id
65 schema:value pub.1000577323
66 rdf:type schema:PropertyValue
67 Nb5c0f7b40993466db8cf02e7b1523fcc schema:name Department of Operations Research, Institute of Statistical Studies and Research, Giza, Egypt
68 rdf:type schema:Organization
69 Nbd303a436f544a25bd36b6d1496379c8 rdf:first sg:person.015235731717.81
70 rdf:rest Nf40c57ab515b44ab97cdb583ae7798d5
71 Ndce26d1ff74940dfa9a491695e827711 schema:isbn 978-3-319-14653-9
72 978-3-319-14654-6
73 schema:name Intelligent Systems in Science and Information 2014
74 rdf:type schema:Book
75 Ne14fe6b3f19140dbb57034ec64431e19 schema:location Cham
76 schema:name Springer International Publishing
77 rdf:type schema:Organisation
78 Ne3820155a055484f918d4b6fa5d392d7 rdf:first N6e316ca2860f44e7a10f6c61319fb002
79 rdf:rest rdf:nil
80 Nf40c57ab515b44ab97cdb583ae7798d5 rdf:first sg:person.012316143117.13
81 rdf:rest Nf49f5ce7cc5b40c8a8dd86e634a28a53
82 Nf49f5ce7cc5b40c8a8dd86e634a28a53 rdf:first sg:person.016101425517.34
83 rdf:rest rdf:nil
84 Nfcca66386cc144c5a3e6cf7b25f76b76 rdf:first N3c57c6041e754fe1a60ae8a96eea90ec
85 rdf:rest N67aac2cd981844de8588d994cb6f9753
86 anzsrc-for:08 schema:inDefinedTermSet anzsrc-for:
87 schema:name Information and Computing Sciences
88 rdf:type schema:DefinedTerm
89 anzsrc-for:0802 schema:inDefinedTermSet anzsrc-for:
90 schema:name Computation Theory and Mathematics
91 rdf:type schema:DefinedTerm
92 sg:person.010655066717.27 schema:affiliation https://www.grid.ac/institutes/grid.411775.1
93 schema:familyName Mohammed
94 schema:givenName Amgad M.
95 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010655066717.27
96 rdf:type schema:Person
97 sg:person.012316143117.13 schema:affiliation Nb5c0f7b40993466db8cf02e7b1523fcc
98 schema:familyName El-Sherbiny
99 schema:givenName Mahmoud M.
100 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012316143117.13
101 rdf:type schema:Person
102 sg:person.015235731717.81 schema:affiliation https://www.grid.ac/institutes/grid.411775.1
103 schema:familyName Elhefnawy
104 schema:givenName N. A.
105 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015235731717.81
106 rdf:type schema:Person
107 sg:person.016101425517.34 schema:affiliation https://www.grid.ac/institutes/grid.411775.1
108 schema:familyName Hadhoud
109 schema:givenName Mohiy M.
110 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016101425517.34
111 rdf:type schema:Person
112 sg:pub.10.1007/11539902_134 schema:sameAs https://app.dimensions.ai/details/publication/pub.1046697086
113 https://doi.org/10.1007/11539902_134
114 rdf:type schema:CreativeWork
115 sg:pub.10.1007/11539902_17 schema:sameAs https://app.dimensions.ai/details/publication/pub.1023649751
116 https://doi.org/10.1007/11539902_17
117 rdf:type schema:CreativeWork
118 sg:pub.10.1007/978-1-84628-887-6 schema:sameAs https://app.dimensions.ai/details/publication/pub.1027621148
119 https://doi.org/10.1007/978-1-84628-887-6
120 rdf:type schema:CreativeWork
121 https://doi.org/10.1016/j.asoc.2012.11.026 schema:sameAs https://app.dimensions.ai/details/publication/pub.1046513898
122 rdf:type schema:CreativeWork
123 https://doi.org/10.1016/j.cma.2004.09.007 schema:sameAs https://app.dimensions.ai/details/publication/pub.1029129153
124 rdf:type schema:CreativeWork
125 https://doi.org/10.1016/j.cma.2005.09.006 schema:sameAs https://app.dimensions.ai/details/publication/pub.1006889987
126 rdf:type schema:CreativeWork
127 https://doi.org/10.1016/j.cor.2005.02.002 schema:sameAs https://app.dimensions.ai/details/publication/pub.1001753574
128 rdf:type schema:CreativeWork
129 https://doi.org/10.1016/s0045-7825(99)00389-8 schema:sameAs https://app.dimensions.ai/details/publication/pub.1029969435
130 rdf:type schema:CreativeWork
131 https://doi.org/10.1109/4235.873238 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061172057
132 rdf:type schema:CreativeWork
133 https://doi.org/10.1109/sai.2014.6918202 schema:sameAs https://app.dimensions.ai/details/publication/pub.1093257768
134 rdf:type schema:CreativeWork
135 https://doi.org/10.1109/tevc.2002.804320 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061604563
136 rdf:type schema:CreativeWork
137 https://doi.org/10.1109/tevc.2004.823467 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061604618
138 rdf:type schema:CreativeWork
139 https://doi.org/10.1109/tevc.2007.905006 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061604820
140 rdf:type schema:CreativeWork
141 https://doi.org/10.1145/882262.882363 schema:sameAs https://app.dimensions.ai/details/publication/pub.1063173586
142 rdf:type schema:CreativeWork
143 https://doi.org/10.1177/003754979406200405 schema:sameAs https://app.dimensions.ai/details/publication/pub.1063684977
144 rdf:type schema:CreativeWork
145 https://doi.org/10.1177/003754979506400605 schema:sameAs https://app.dimensions.ai/details/publication/pub.1063685053
146 rdf:type schema:CreativeWork
147 https://www.grid.ac/institutes/grid.411775.1 schema:alternateName Menoufia University
148 schema:name Department of Information Technology, Menofia University, Menofia, Egypt
149 Department of Operations Research, Menofia University, Menofia, Egypt
150 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...