Relativistic Quantum Chemistry: An Advanced Approach to the Construction of the Green Function of the Dirac Equation with Complex Energy ... View Full Text


Ontology type: schema:Chapter     


Chapter Info

DATE

2015-04-03

AUTHORS

A. V. Glushkov , A. A. Svinarenko , O. Yu. Khetselius , V. V. Buyadzhi , T. A. Florko , A. N. Shakhman

ABSTRACT

We present an advanced approach to construction of the electron Green’s function of the Dirac equation with a non-singular central nuclear potential and complex energy. The Fermi-model and relativistic mean-field (RMF) nuclear potentials are used. The radial Green’s function is represented as a combination of two fundamental solutions of the Dirac equation. The approach proposed includes a procedure of generating the relativistic electron functions with performance of the gauge invariance principle. In order to reach the gauge invariance principle performance we use earlier developed QED perturbation theory approach. In the fourth order of the QED perturbation theory (PT) there are diagrams, whose contribution into imaginary part of radiation width Im δE for the multi-electron system accounts for multi-body correlation effects. A minimization of the functional Im δE leads to integral-differential Dirac-Kohn-Sham-like density functional equations. Further check for the gauge principle performance is realized by means of the Ward identities. In the numerical procedure we use the effective Ivanova-Ivanov’s algorithm, within which a determination of the Dirac equation fundamental solutions is reduced to solving the single system of the differential equations. This system includes the differential equations for the nuclear potential and equations for calculating the integrals of ∫∫dr1dr2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ {\iint {dr_{1} dr_{2} } } $$\end{document} type in the Mohr’s formula for definition of the self-energy shift to atomic levels energies. Such a approach allows to compensate a main source of the errors, connected with numerical integration ∫dξ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \int {d\xi } $$\end{document} and summation on χ in the Mohr’s expressions during calculating the self-energy radiative correction to the atomic levels energies. As illustration, data on the nuclear finite size effect and self-energy Lamb shift contributions to the energy of 2s-2p1/2 transition for the Li-like ions of argon, iron, krypton and uranium are presented and compared with available theoretical and experimental results. More... »

PAGES

197-217

Book

TITLE

Frontiers in Quantum Methods and Applications in Chemistry and Physics

ISBN

978-3-319-14396-5
978-3-319-14397-2

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/978-3-319-14397-2_12

DOI

http://dx.doi.org/10.1007/978-3-319-14397-2_12

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1011325414


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/02", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Physical Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0202", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Atomic, Molecular, Nuclear, Particle and Plasma Physics", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Odessa State Environmental University (OSENU), L\u2019vovskaya Str, 15, 65016, Odessa, Ukraine", 
          "id": "http://www.grid.ac/institutes/grid.436916.f", 
          "name": [
            "Odessa State Environmental University (OSENU), L\u2019vovskaya Str, 15, 65016, Odessa, Ukraine"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Glushkov", 
        "givenName": "A. V.", 
        "id": "sg:person.012001573415.12", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012001573415.12"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Odessa State Environmental University (OSENU), L\u2019vovskaya Str, 15, 65016, Odessa, Ukraine", 
          "id": "http://www.grid.ac/institutes/grid.436916.f", 
          "name": [
            "Odessa State Environmental University (OSENU), L\u2019vovskaya Str, 15, 65016, Odessa, Ukraine"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Svinarenko", 
        "givenName": "A. A.", 
        "id": "sg:person.010215751543.48", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010215751543.48"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Odessa State Environmental University (OSENU), L\u2019vovskaya Str, 15, 65016, Odessa, Ukraine", 
          "id": "http://www.grid.ac/institutes/grid.436916.f", 
          "name": [
            "Odessa State Environmental University (OSENU), L\u2019vovskaya Str, 15, 65016, Odessa, Ukraine"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Khetselius", 
        "givenName": "O. Yu.", 
        "id": "sg:person.014624751311.43", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014624751311.43"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Odessa State Environmental University (OSENU), L\u2019vovskaya Str, 15, 65016, Odessa, Ukraine", 
          "id": "http://www.grid.ac/institutes/grid.436916.f", 
          "name": [
            "Odessa State Environmental University (OSENU), L\u2019vovskaya Str, 15, 65016, Odessa, Ukraine"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Buyadzhi", 
        "givenName": "V. V.", 
        "id": "sg:person.013001451411.90", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013001451411.90"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Odessa State Environmental University (OSENU), L\u2019vovskaya Str, 15, 65016, Odessa, Ukraine", 
          "id": "http://www.grid.ac/institutes/grid.436916.f", 
          "name": [
            "Odessa State Environmental University (OSENU), L\u2019vovskaya Str, 15, 65016, Odessa, Ukraine"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Florko", 
        "givenName": "T. A.", 
        "id": "sg:person.07747731501.02", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07747731501.02"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Odessa State Environmental University (OSENU), L\u2019vovskaya Str, 15, 65016, Odessa, Ukraine", 
          "id": "http://www.grid.ac/institutes/grid.436916.f", 
          "name": [
            "Odessa State Environmental University (OSENU), L\u2019vovskaya Str, 15, 65016, Odessa, Ukraine"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Shakhman", 
        "givenName": "A. N.", 
        "id": "sg:person.012546441025.24", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012546441025.24"
        ], 
        "type": "Person"
      }
    ], 
    "datePublished": "2015-04-03", 
    "datePublishedReg": "2015-04-03", 
    "description": "We present an advanced approach to construction of the electron Green\u2019s function of the Dirac equation with a non-singular central nuclear potential and complex energy. The Fermi-model and relativistic mean-field (RMF) nuclear potentials are used. The radial Green\u2019s function is represented as a combination of two fundamental solutions of the Dirac equation. The approach proposed includes a procedure of generating the relativistic electron functions with performance of the gauge invariance principle. In order to reach the gauge invariance principle performance we use earlier developed QED perturbation theory approach. In the fourth order of the QED perturbation theory (PT) there are diagrams, whose contribution into imaginary part of radiation width Im \u03b4E for the multi-electron system accounts for multi-body correlation effects. A minimization of the functional Im \u03b4E leads to integral-differential Dirac-Kohn-Sham-like density functional equations. Further check for the gauge principle performance is realized by means of the Ward identities. In the numerical procedure we use the effective Ivanova-Ivanov\u2019s algorithm, within which a determination of the Dirac equation fundamental solutions is reduced to solving the single system of the differential equations. This system includes the differential equations for the nuclear potential and equations for calculating the integrals of \u222b\u222bdr1dr2\\documentclass[12pt]{minimal}\n\t\t\t\t\\usepackage{amsmath}\n\t\t\t\t\\usepackage{wasysym}\n\t\t\t\t\\usepackage{amsfonts}\n\t\t\t\t\\usepackage{amssymb}\n\t\t\t\t\\usepackage{amsbsy}\n\t\t\t\t\\usepackage{mathrsfs}\n\t\t\t\t\\usepackage{upgreek}\n\t\t\t\t\\setlength{\\oddsidemargin}{-69pt}\n\t\t\t\t\\begin{document}$$ {\\iint {dr_{1} dr_{2} } } $$\\end{document} type in the Mohr\u2019s formula for definition of the self-energy shift to atomic levels energies. Such a approach allows to compensate a main source of the errors, connected with numerical integration \u222bd\u03be\\documentclass[12pt]{minimal}\n\t\t\t\t\\usepackage{amsmath}\n\t\t\t\t\\usepackage{wasysym}\n\t\t\t\t\\usepackage{amsfonts}\n\t\t\t\t\\usepackage{amssymb}\n\t\t\t\t\\usepackage{amsbsy}\n\t\t\t\t\\usepackage{mathrsfs}\n\t\t\t\t\\usepackage{upgreek}\n\t\t\t\t\\setlength{\\oddsidemargin}{-69pt}\n\t\t\t\t\\begin{document}$$ \\int {d\\xi } $$\\end{document} and summation on \u03c7 in the Mohr\u2019s expressions during calculating the self-energy radiative correction to the atomic levels energies. As illustration, data on the nuclear finite size effect and self-energy Lamb shift contributions to the energy of 2s-2p1/2 transition for the Li-like ions of argon, iron, krypton and uranium are presented and compared with available theoretical and experimental results.", 
    "editor": [
      {
        "familyName": "Nascimento", 
        "givenName": "M.A.C.", 
        "type": "Person"
      }, 
      {
        "familyName": "Maruani", 
        "givenName": "Jean", 
        "type": "Person"
      }, 
      {
        "familyName": "Br\u00e4ndas", 
        "givenName": "Erkki J.", 
        "type": "Person"
      }, 
      {
        "familyName": "Delgado-Barrio", 
        "givenName": "Gerardo", 
        "type": "Person"
      }
    ], 
    "genre": "chapter", 
    "id": "sg:pub.10.1007/978-3-319-14397-2_12", 
    "inLanguage": "en", 
    "isAccessibleForFree": false, 
    "isPartOf": {
      "isbn": [
        "978-3-319-14396-5", 
        "978-3-319-14397-2"
      ], 
      "name": "Frontiers in Quantum Methods and Applications in Chemistry and Physics", 
      "type": "Book"
    }, 
    "keywords": [
      "Dirac equation", 
      "differential equations", 
      "Green's function", 
      "fundamental solutions", 
      "perturbation theory", 
      "atomic levels energies", 
      "complex energies", 
      "density functional equations", 
      "electron Green's function", 
      "gauge invariance principle", 
      "multi-electron system", 
      "finite-size effects", 
      "perturbation theory approach", 
      "self-energy radiative corrections", 
      "principle performance", 
      "functional equation", 
      "invariance principle", 
      "radial Green\u2019s function", 
      "fourth order", 
      "numerical integration", 
      "nuclear potential", 
      "QED perturbation theory", 
      "Ward identities", 
      "equations", 
      "electron functions", 
      "numerical procedure", 
      "level energies", 
      "correlation effects", 
      "Dirac-Kohn", 
      "self-energy shift", 
      "Fermi model", 
      "imaginary part", 
      "nuclear finite size effects", 
      "advanced approach", 
      "theory approach", 
      "further check", 
      "formula", 
      "radiative corrections", 
      "algorithm", 
      "size effect", 
      "solution", 
      "integrals", 
      "Li-like ions", 
      "experimental results", 
      "minimization", 
      "approach", 
      "function", 
      "energy", 
      "theory", 
      "system", 
      "single system", 
      "error", 
      "diagram", 
      "performance", 
      "illustration", 
      "construction", 
      "order", 
      "summation", 
      "shift contributions", 
      "principles", 
      "transition", 
      "procedure", 
      "correction", 
      "Lamb shift contributions", 
      "contribution", 
      "means", 
      "definition", 
      "potential", 
      "results", 
      "krypton", 
      "integration", 
      "check", 
      "argon", 
      "ions", 
      "effect", 
      "data", 
      "types", 
      "determination", 
      "main source", 
      "source", 
      "combination", 
      "part", 
      "shift", 
      "expression", 
      "uranium", 
      "iron", 
      "identity"
    ], 
    "name": "Relativistic Quantum Chemistry: An Advanced Approach to the Construction of the Green Function of the Dirac Equation with Complex Energy and Mean-Field Nuclear Potential", 
    "pagination": "197-217", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1011325414"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/978-3-319-14397-2_12"
        ]
      }
    ], 
    "publisher": {
      "name": "Springer Nature", 
      "type": "Organisation"
    }, 
    "sameAs": [
      "https://doi.org/10.1007/978-3-319-14397-2_12", 
      "https://app.dimensions.ai/details/publication/pub.1011325414"
    ], 
    "sdDataset": "chapters", 
    "sdDatePublished": "2022-05-20T07:43", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20220519/entities/gbq_results/chapter/chapter_189.jsonl", 
    "type": "Chapter", 
    "url": "https://doi.org/10.1007/978-3-319-14397-2_12"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/978-3-319-14397-2_12'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/978-3-319-14397-2_12'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/978-3-319-14397-2_12'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/978-3-319-14397-2_12'


 

This table displays all metadata directly associated to this object as RDF triples.

197 TRIPLES      23 PREDICATES      112 URIs      105 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/978-3-319-14397-2_12 schema:about anzsrc-for:02
2 anzsrc-for:0202
3 schema:author N983ac1e34edc4b6f80942485e0cc0f69
4 schema:datePublished 2015-04-03
5 schema:datePublishedReg 2015-04-03
6 schema:description We present an advanced approach to construction of the electron Green’s function of the Dirac equation with a non-singular central nuclear potential and complex energy. The Fermi-model and relativistic mean-field (RMF) nuclear potentials are used. The radial Green’s function is represented as a combination of two fundamental solutions of the Dirac equation. The approach proposed includes a procedure of generating the relativistic electron functions with performance of the gauge invariance principle. In order to reach the gauge invariance principle performance we use earlier developed QED perturbation theory approach. In the fourth order of the QED perturbation theory (PT) there are diagrams, whose contribution into imaginary part of radiation width Im δE for the multi-electron system accounts for multi-body correlation effects. A minimization of the functional Im δE leads to integral-differential Dirac-Kohn-Sham-like density functional equations. Further check for the gauge principle performance is realized by means of the Ward identities. In the numerical procedure we use the effective Ivanova-Ivanov’s algorithm, within which a determination of the Dirac equation fundamental solutions is reduced to solving the single system of the differential equations. This system includes the differential equations for the nuclear potential and equations for calculating the integrals of ∫∫dr1dr2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ {\iint {dr_{1} dr_{2} } } $$\end{document} type in the Mohr’s formula for definition of the self-energy shift to atomic levels energies. Such a approach allows to compensate a main source of the errors, connected with numerical integration ∫dξ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \int {d\xi } $$\end{document} and summation on χ in the Mohr’s expressions during calculating the self-energy radiative correction to the atomic levels energies. As illustration, data on the nuclear finite size effect and self-energy Lamb shift contributions to the energy of 2s-2p1/2 transition for the Li-like ions of argon, iron, krypton and uranium are presented and compared with available theoretical and experimental results.
7 schema:editor Na156fc52803141d8ba7f0d5277c86c06
8 schema:genre chapter
9 schema:inLanguage en
10 schema:isAccessibleForFree false
11 schema:isPartOf N4503877df93641b2a56e0133e950a657
12 schema:keywords Dirac equation
13 Dirac-Kohn
14 Fermi model
15 Green's function
16 Lamb shift contributions
17 Li-like ions
18 QED perturbation theory
19 Ward identities
20 advanced approach
21 algorithm
22 approach
23 argon
24 atomic levels energies
25 check
26 combination
27 complex energies
28 construction
29 contribution
30 correction
31 correlation effects
32 data
33 definition
34 density functional equations
35 determination
36 diagram
37 differential equations
38 effect
39 electron Green's function
40 electron functions
41 energy
42 equations
43 error
44 experimental results
45 expression
46 finite-size effects
47 formula
48 fourth order
49 function
50 functional equation
51 fundamental solutions
52 further check
53 gauge invariance principle
54 identity
55 illustration
56 imaginary part
57 integrals
58 integration
59 invariance principle
60 ions
61 iron
62 krypton
63 level energies
64 main source
65 means
66 minimization
67 multi-electron system
68 nuclear finite size effects
69 nuclear potential
70 numerical integration
71 numerical procedure
72 order
73 part
74 performance
75 perturbation theory
76 perturbation theory approach
77 potential
78 principle performance
79 principles
80 procedure
81 radial Green’s function
82 radiative corrections
83 results
84 self-energy radiative corrections
85 self-energy shift
86 shift
87 shift contributions
88 single system
89 size effect
90 solution
91 source
92 summation
93 system
94 theory
95 theory approach
96 transition
97 types
98 uranium
99 schema:name Relativistic Quantum Chemistry: An Advanced Approach to the Construction of the Green Function of the Dirac Equation with Complex Energy and Mean-Field Nuclear Potential
100 schema:pagination 197-217
101 schema:productId N59f9cd08ba744af48c825d16a1b798cc
102 N9264f704a0144662bed93d5436c8ce03
103 schema:publisher N02d8014c0dab4e9e9f4facc04a1fd770
104 schema:sameAs https://app.dimensions.ai/details/publication/pub.1011325414
105 https://doi.org/10.1007/978-3-319-14397-2_12
106 schema:sdDatePublished 2022-05-20T07:43
107 schema:sdLicense https://scigraph.springernature.com/explorer/license/
108 schema:sdPublisher Neb812a5a01874acda9ddfdd9d0fdebb0
109 schema:url https://doi.org/10.1007/978-3-319-14397-2_12
110 sgo:license sg:explorer/license/
111 sgo:sdDataset chapters
112 rdf:type schema:Chapter
113 N01ded3fa805340e48ae62b5d195a6125 rdf:first sg:person.014624751311.43
114 rdf:rest N14b770b9c8a748d184fb3afbbc059001
115 N02d8014c0dab4e9e9f4facc04a1fd770 schema:name Springer Nature
116 rdf:type schema:Organisation
117 N14b770b9c8a748d184fb3afbbc059001 rdf:first sg:person.013001451411.90
118 rdf:rest Ncf9dc3d2467c4271a16bb14b2a099578
119 N1a3e94ca8604405d9e5902cd7dad85da rdf:first sg:person.012546441025.24
120 rdf:rest rdf:nil
121 N21dcd404fb654645a8f936d852992168 schema:familyName Brändas
122 schema:givenName Erkki J.
123 rdf:type schema:Person
124 N4503877df93641b2a56e0133e950a657 schema:isbn 978-3-319-14396-5
125 978-3-319-14397-2
126 schema:name Frontiers in Quantum Methods and Applications in Chemistry and Physics
127 rdf:type schema:Book
128 N53562243f65e4043865430ab29a0aec9 rdf:first N83e1a77a7118441ca24f8a5b9e2ccca7
129 rdf:rest Nbe5554844d0b432eb562231f82e72253
130 N59f9cd08ba744af48c825d16a1b798cc schema:name doi
131 schema:value 10.1007/978-3-319-14397-2_12
132 rdf:type schema:PropertyValue
133 N7974a1915704408d85eff23e0807f943 rdf:first Nd7489fdddf184d78afcd2b0e1a388706
134 rdf:rest rdf:nil
135 N83e1a77a7118441ca24f8a5b9e2ccca7 schema:familyName Maruani
136 schema:givenName Jean
137 rdf:type schema:Person
138 N9264f704a0144662bed93d5436c8ce03 schema:name dimensions_id
139 schema:value pub.1011325414
140 rdf:type schema:PropertyValue
141 N983ac1e34edc4b6f80942485e0cc0f69 rdf:first sg:person.012001573415.12
142 rdf:rest N9b1eb9dd3db44cd5a46badf8ef3ed4fe
143 N9b1eb9dd3db44cd5a46badf8ef3ed4fe rdf:first sg:person.010215751543.48
144 rdf:rest N01ded3fa805340e48ae62b5d195a6125
145 Na156fc52803141d8ba7f0d5277c86c06 rdf:first Ne0ff25b013414f069249ec2136c62a4f
146 rdf:rest N53562243f65e4043865430ab29a0aec9
147 Nbe5554844d0b432eb562231f82e72253 rdf:first N21dcd404fb654645a8f936d852992168
148 rdf:rest N7974a1915704408d85eff23e0807f943
149 Ncf9dc3d2467c4271a16bb14b2a099578 rdf:first sg:person.07747731501.02
150 rdf:rest N1a3e94ca8604405d9e5902cd7dad85da
151 Nd7489fdddf184d78afcd2b0e1a388706 schema:familyName Delgado-Barrio
152 schema:givenName Gerardo
153 rdf:type schema:Person
154 Ne0ff25b013414f069249ec2136c62a4f schema:familyName Nascimento
155 schema:givenName M.A.C.
156 rdf:type schema:Person
157 Neb812a5a01874acda9ddfdd9d0fdebb0 schema:name Springer Nature - SN SciGraph project
158 rdf:type schema:Organization
159 anzsrc-for:02 schema:inDefinedTermSet anzsrc-for:
160 schema:name Physical Sciences
161 rdf:type schema:DefinedTerm
162 anzsrc-for:0202 schema:inDefinedTermSet anzsrc-for:
163 schema:name Atomic, Molecular, Nuclear, Particle and Plasma Physics
164 rdf:type schema:DefinedTerm
165 sg:person.010215751543.48 schema:affiliation grid-institutes:grid.436916.f
166 schema:familyName Svinarenko
167 schema:givenName A. A.
168 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010215751543.48
169 rdf:type schema:Person
170 sg:person.012001573415.12 schema:affiliation grid-institutes:grid.436916.f
171 schema:familyName Glushkov
172 schema:givenName A. V.
173 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012001573415.12
174 rdf:type schema:Person
175 sg:person.012546441025.24 schema:affiliation grid-institutes:grid.436916.f
176 schema:familyName Shakhman
177 schema:givenName A. N.
178 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012546441025.24
179 rdf:type schema:Person
180 sg:person.013001451411.90 schema:affiliation grid-institutes:grid.436916.f
181 schema:familyName Buyadzhi
182 schema:givenName V. V.
183 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013001451411.90
184 rdf:type schema:Person
185 sg:person.014624751311.43 schema:affiliation grid-institutes:grid.436916.f
186 schema:familyName Khetselius
187 schema:givenName O. Yu.
188 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014624751311.43
189 rdf:type schema:Person
190 sg:person.07747731501.02 schema:affiliation grid-institutes:grid.436916.f
191 schema:familyName Florko
192 schema:givenName T. A.
193 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07747731501.02
194 rdf:type schema:Person
195 grid-institutes:grid.436916.f schema:alternateName Odessa State Environmental University (OSENU), L’vovskaya Str, 15, 65016, Odessa, Ukraine
196 schema:name Odessa State Environmental University (OSENU), L’vovskaya Str, 15, 65016, Odessa, Ukraine
197 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...