Segmentation of Lungs with Interstitial Lung Disease in CT Scans: A TV-L1 Based Texture Analysis Approach View Full Text


Ontology type: schema:Chapter     


Chapter Info

DATE

2014

AUTHORS

Gurman Gill , Reinhard R. Beichel

ABSTRACT

Lung segmentation methods are important for automated lung image analysis tasks such as quantification of lung diseases. In this paper, we describe a method for segmentation of lungs with interstitial lung disease (ILD). In thoracic CT scans, such lungs are characterized by the presence of texture patterns like honeycombing, which makes lung segmentation difficult. We employ a 3D total variation L1 (TV-L1) based texture analysis approach to extract these patterns and attenuate the density of the corresponding voxels in the CT scan. The modified CT scan is then utilized as input to an existing 3D robust active shape model based lung segmentation method. The proposed method was evaluated on 77 CT scans of lungs with and without ILD. On cases with ILD, our method obtained an average volumetric overlap of 0.95±0.02, which was statistically significantly better than two other approaches. The TV-L1 texture analysis utilizes GPUs, making our method fast. More... »

PAGES

511-520

Book

TITLE

Advances in Visual Computing

ISBN

978-3-319-14248-7
978-3-319-14249-4

Author Affiliations

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/978-3-319-14249-4_48

DOI

http://dx.doi.org/10.1007/978-3-319-14249-4_48

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1037635700


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0801", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Artificial Intelligence and Image Processing", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/08", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Information and Computing Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "University of Iowa", 
          "id": "https://www.grid.ac/institutes/grid.214572.7", 
          "name": [
            "Dept. of Electrical and Computer Engineering, The University of Iowa, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Gill", 
        "givenName": "Gurman", 
        "id": "sg:person.01251117710.54", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01251117710.54"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of Iowa", 
          "id": "https://www.grid.ac/institutes/grid.214572.7", 
          "name": [
            "Dept. of Electrical and Computer Engineering, The University of Iowa, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Beichel", 
        "givenName": "Reinhard R.", 
        "id": "sg:person.0712077707.42", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0712077707.42"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1016/j.acra.2007.03.009", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1003121508"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1118/1.3003066", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1013241548"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1155/2014/479154", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1015610631"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1148/rg.252045070", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1018027538"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1118/1.3222872", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1020826779"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1118/1.2207131", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1023719759"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0167-2789(92)90242-f", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1030232634"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0167-2789(92)90242-f", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1030232634"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1118/1.1597431", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1030250710"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.acra.2004.06.005", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1041310609"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s1076-6332(03)00380-5", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1044210357"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s1076-6332(03)00380-5", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1044210357"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1148/radiol.2361031674", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1050651943"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/42.929615", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061171044"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/tmi.2011.2171357", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061695812"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/cbms.2007.13", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1093305432"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/isbi.2010.5490285", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1093887215"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/cvprw.2008.4563099", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1094305908"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/itab.2010.5687763", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1094702446"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/icassp.2007.366133", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1095113501"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2014", 
    "datePublishedReg": "2014-01-01", 
    "description": "Lung segmentation methods are important for automated lung image analysis tasks such as quantification of lung diseases. In this paper, we describe a method for segmentation of lungs with interstitial lung disease (ILD). In thoracic CT scans, such lungs are characterized by the presence of texture patterns like honeycombing, which makes lung segmentation difficult. We employ a 3D total variation L1 (TV-L1) based texture analysis approach to extract these patterns and attenuate the density of the corresponding voxels in the CT scan. The modified CT scan is then utilized as input to an existing 3D robust active shape model based lung segmentation method. The proposed method was evaluated on 77 CT scans of lungs with and without ILD. On cases with ILD, our method obtained an average volumetric overlap of 0.95\u00b10.02, which was statistically significantly better than two other approaches. The TV-L1 texture analysis utilizes GPUs, making our method fast.", 
    "editor": [
      {
        "familyName": "Bebis", 
        "givenName": "George", 
        "type": "Person"
      }, 
      {
        "familyName": "Boyle", 
        "givenName": "Richard", 
        "type": "Person"
      }, 
      {
        "familyName": "Parvin", 
        "givenName": "Bahram", 
        "type": "Person"
      }, 
      {
        "familyName": "Koracin", 
        "givenName": "Darko", 
        "type": "Person"
      }, 
      {
        "familyName": "McMahan", 
        "givenName": "Ryan", 
        "type": "Person"
      }, 
      {
        "familyName": "Jerald", 
        "givenName": "Jason", 
        "type": "Person"
      }, 
      {
        "familyName": "Zhang", 
        "givenName": "Hui", 
        "type": "Person"
      }, 
      {
        "familyName": "Drucker", 
        "givenName": "Steven M.", 
        "type": "Person"
      }, 
      {
        "familyName": "Kambhamettu", 
        "givenName": "Chandra", 
        "type": "Person"
      }, 
      {
        "familyName": "El Choubassi", 
        "givenName": "Maha", 
        "type": "Person"
      }, 
      {
        "familyName": "Deng", 
        "givenName": "Zhigang", 
        "type": "Person"
      }, 
      {
        "familyName": "Carlson", 
        "givenName": "Mark", 
        "type": "Person"
      }
    ], 
    "genre": "chapter", 
    "id": "sg:pub.10.1007/978-3-319-14249-4_48", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": {
      "isbn": [
        "978-3-319-14248-7", 
        "978-3-319-14249-4"
      ], 
      "name": "Advances in Visual Computing", 
      "type": "Book"
    }, 
    "name": "Segmentation of Lungs with Interstitial Lung Disease in CT Scans: A TV-L1 Based Texture Analysis Approach", 
    "pagination": "511-520", 
    "productId": [
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/978-3-319-14249-4_48"
        ]
      }, 
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "b34911068e544d6ca14b2912fd88a22fe6ab46ff1e57d2ee139fcf7e1440b18e"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1037635700"
        ]
      }
    ], 
    "publisher": {
      "location": "Cham", 
      "name": "Springer International Publishing", 
      "type": "Organisation"
    }, 
    "sameAs": [
      "https://doi.org/10.1007/978-3-319-14249-4_48", 
      "https://app.dimensions.ai/details/publication/pub.1037635700"
    ], 
    "sdDataset": "chapters", 
    "sdDatePublished": "2019-04-16T00:50", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8700_00000266.jsonl", 
    "type": "Chapter", 
    "url": "http://link.springer.com/10.1007/978-3-319-14249-4_48"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/978-3-319-14249-4_48'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/978-3-319-14249-4_48'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/978-3-319-14249-4_48'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/978-3-319-14249-4_48'


 

This table displays all metadata directly associated to this object as RDF triples.

181 TRIPLES      23 PREDICATES      45 URIs      20 LITERALS      8 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/978-3-319-14249-4_48 schema:about anzsrc-for:08
2 anzsrc-for:0801
3 schema:author N5851fb9f23a2405c8f65bdecf1a3e357
4 schema:citation https://doi.org/10.1016/0167-2789(92)90242-f
5 https://doi.org/10.1016/j.acra.2004.06.005
6 https://doi.org/10.1016/j.acra.2007.03.009
7 https://doi.org/10.1016/s1076-6332(03)00380-5
8 https://doi.org/10.1109/42.929615
9 https://doi.org/10.1109/cbms.2007.13
10 https://doi.org/10.1109/cvprw.2008.4563099
11 https://doi.org/10.1109/icassp.2007.366133
12 https://doi.org/10.1109/isbi.2010.5490285
13 https://doi.org/10.1109/itab.2010.5687763
14 https://doi.org/10.1109/tmi.2011.2171357
15 https://doi.org/10.1118/1.1597431
16 https://doi.org/10.1118/1.2207131
17 https://doi.org/10.1118/1.3003066
18 https://doi.org/10.1118/1.3222872
19 https://doi.org/10.1148/radiol.2361031674
20 https://doi.org/10.1148/rg.252045070
21 https://doi.org/10.1155/2014/479154
22 schema:datePublished 2014
23 schema:datePublishedReg 2014-01-01
24 schema:description Lung segmentation methods are important for automated lung image analysis tasks such as quantification of lung diseases. In this paper, we describe a method for segmentation of lungs with interstitial lung disease (ILD). In thoracic CT scans, such lungs are characterized by the presence of texture patterns like honeycombing, which makes lung segmentation difficult. We employ a 3D total variation L1 (TV-L1) based texture analysis approach to extract these patterns and attenuate the density of the corresponding voxels in the CT scan. The modified CT scan is then utilized as input to an existing 3D robust active shape model based lung segmentation method. The proposed method was evaluated on 77 CT scans of lungs with and without ILD. On cases with ILD, our method obtained an average volumetric overlap of 0.95±0.02, which was statistically significantly better than two other approaches. The TV-L1 texture analysis utilizes GPUs, making our method fast.
25 schema:editor N7a946129566f4b48af91a1c9a35d1d57
26 schema:genre chapter
27 schema:inLanguage en
28 schema:isAccessibleForFree false
29 schema:isPartOf N9eff6ac4536d419ba00fc8bceea76c19
30 schema:name Segmentation of Lungs with Interstitial Lung Disease in CT Scans: A TV-L1 Based Texture Analysis Approach
31 schema:pagination 511-520
32 schema:productId N8b29ab47e5f54a9683d647c3dc155d1c
33 Nce33e8a621ce45abb4510dac8371e97c
34 Nd1cc4ff19c1647f09b784808ece527e5
35 schema:publisher N3cbde2200f3549e5afa44aac3be5a578
36 schema:sameAs https://app.dimensions.ai/details/publication/pub.1037635700
37 https://doi.org/10.1007/978-3-319-14249-4_48
38 schema:sdDatePublished 2019-04-16T00:50
39 schema:sdLicense https://scigraph.springernature.com/explorer/license/
40 schema:sdPublisher N4d8d1afc0f1f4036a43328ad2fae9296
41 schema:url http://link.springer.com/10.1007/978-3-319-14249-4_48
42 sgo:license sg:explorer/license/
43 sgo:sdDataset chapters
44 rdf:type schema:Chapter
45 N0a06946f128041b295f0f0cc43d22f98 schema:familyName Deng
46 schema:givenName Zhigang
47 rdf:type schema:Person
48 N32e39e1c2cc648d4a45521a18be987c6 schema:familyName Zhang
49 schema:givenName Hui
50 rdf:type schema:Person
51 N3bcdc117d4044c7f9445d862ec6ce13b schema:familyName Jerald
52 schema:givenName Jason
53 rdf:type schema:Person
54 N3cbde2200f3549e5afa44aac3be5a578 schema:location Cham
55 schema:name Springer International Publishing
56 rdf:type schema:Organisation
57 N4d8cb97d81ed42b39b4208db03219ca0 schema:familyName Koracin
58 schema:givenName Darko
59 rdf:type schema:Person
60 N4d8d1afc0f1f4036a43328ad2fae9296 schema:name Springer Nature - SN SciGraph project
61 rdf:type schema:Organization
62 N4e19637c4059497baf1b55796777c6ee rdf:first N3bcdc117d4044c7f9445d862ec6ce13b
63 rdf:rest N7715b816d234410590adbb82d0e054cc
64 N5017dfb36f874628a052e8ce79be21f4 rdf:first sg:person.0712077707.42
65 rdf:rest rdf:nil
66 N57b7f79e9fe949fab7d41773ff1eae4b rdf:first N0a06946f128041b295f0f0cc43d22f98
67 rdf:rest N5be5992d1ee9445c8488eab2d0c754b7
68 N5851fb9f23a2405c8f65bdecf1a3e357 rdf:first sg:person.01251117710.54
69 rdf:rest N5017dfb36f874628a052e8ce79be21f4
70 N5be5992d1ee9445c8488eab2d0c754b7 rdf:first Nec4343cb44d44ccdb713c6e5885e35a9
71 rdf:rest rdf:nil
72 N694558241f88413db71500f21a1fd97d rdf:first N4d8cb97d81ed42b39b4208db03219ca0
73 rdf:rest Ne8984e58cbdf428a86cd452a4679c66d
74 N7715b816d234410590adbb82d0e054cc rdf:first N32e39e1c2cc648d4a45521a18be987c6
75 rdf:rest Na6fe11ce6321464f91133362bfe3b0fa
76 N7a946129566f4b48af91a1c9a35d1d57 rdf:first N9b75982a9a5f4c6680cbcf865680d2a2
77 rdf:rest Nd71ebe54dc63497589aa785b3c37c888
78 N8b29ab47e5f54a9683d647c3dc155d1c schema:name dimensions_id
79 schema:value pub.1037635700
80 rdf:type schema:PropertyValue
81 N947506a164dd46c0920fee62a48b7b4b schema:familyName Kambhamettu
82 schema:givenName Chandra
83 rdf:type schema:Person
84 N9b75982a9a5f4c6680cbcf865680d2a2 schema:familyName Bebis
85 schema:givenName George
86 rdf:type schema:Person
87 N9da0f715cb264e49a950858d153df526 rdf:first Neefdf823c2f64d539933e0ce391c9884
88 rdf:rest N694558241f88413db71500f21a1fd97d
89 N9eff6ac4536d419ba00fc8bceea76c19 schema:isbn 978-3-319-14248-7
90 978-3-319-14249-4
91 schema:name Advances in Visual Computing
92 rdf:type schema:Book
93 Na6fe11ce6321464f91133362bfe3b0fa rdf:first Ncd0e5c2c9bc645feb9e525c7681ea01c
94 rdf:rest Nc5b34aeb38414ed1a2a5443b4ef53b0b
95 Nab78cd345e3d4c98a33cecbe781b2f83 schema:familyName Boyle
96 schema:givenName Richard
97 rdf:type schema:Person
98 Nc5b34aeb38414ed1a2a5443b4ef53b0b rdf:first N947506a164dd46c0920fee62a48b7b4b
99 rdf:rest Nd003a4a0a756452498f03e3865d2c4aa
100 Ncd0e5c2c9bc645feb9e525c7681ea01c schema:familyName Drucker
101 schema:givenName Steven M.
102 rdf:type schema:Person
103 Nce33e8a621ce45abb4510dac8371e97c schema:name readcube_id
104 schema:value b34911068e544d6ca14b2912fd88a22fe6ab46ff1e57d2ee139fcf7e1440b18e
105 rdf:type schema:PropertyValue
106 Nd003a4a0a756452498f03e3865d2c4aa rdf:first Ndc5ca47b16fe473b9c20c6685443c2f0
107 rdf:rest N57b7f79e9fe949fab7d41773ff1eae4b
108 Nd1cc4ff19c1647f09b784808ece527e5 schema:name doi
109 schema:value 10.1007/978-3-319-14249-4_48
110 rdf:type schema:PropertyValue
111 Nd71ebe54dc63497589aa785b3c37c888 rdf:first Nab78cd345e3d4c98a33cecbe781b2f83
112 rdf:rest N9da0f715cb264e49a950858d153df526
113 Ndc5ca47b16fe473b9c20c6685443c2f0 schema:familyName El Choubassi
114 schema:givenName Maha
115 rdf:type schema:Person
116 Ne8984e58cbdf428a86cd452a4679c66d rdf:first Nf08aca713c4046dfbdfe2e90f7d2264e
117 rdf:rest N4e19637c4059497baf1b55796777c6ee
118 Nec4343cb44d44ccdb713c6e5885e35a9 schema:familyName Carlson
119 schema:givenName Mark
120 rdf:type schema:Person
121 Neefdf823c2f64d539933e0ce391c9884 schema:familyName Parvin
122 schema:givenName Bahram
123 rdf:type schema:Person
124 Nf08aca713c4046dfbdfe2e90f7d2264e schema:familyName McMahan
125 schema:givenName Ryan
126 rdf:type schema:Person
127 anzsrc-for:08 schema:inDefinedTermSet anzsrc-for:
128 schema:name Information and Computing Sciences
129 rdf:type schema:DefinedTerm
130 anzsrc-for:0801 schema:inDefinedTermSet anzsrc-for:
131 schema:name Artificial Intelligence and Image Processing
132 rdf:type schema:DefinedTerm
133 sg:person.01251117710.54 schema:affiliation https://www.grid.ac/institutes/grid.214572.7
134 schema:familyName Gill
135 schema:givenName Gurman
136 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01251117710.54
137 rdf:type schema:Person
138 sg:person.0712077707.42 schema:affiliation https://www.grid.ac/institutes/grid.214572.7
139 schema:familyName Beichel
140 schema:givenName Reinhard R.
141 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0712077707.42
142 rdf:type schema:Person
143 https://doi.org/10.1016/0167-2789(92)90242-f schema:sameAs https://app.dimensions.ai/details/publication/pub.1030232634
144 rdf:type schema:CreativeWork
145 https://doi.org/10.1016/j.acra.2004.06.005 schema:sameAs https://app.dimensions.ai/details/publication/pub.1041310609
146 rdf:type schema:CreativeWork
147 https://doi.org/10.1016/j.acra.2007.03.009 schema:sameAs https://app.dimensions.ai/details/publication/pub.1003121508
148 rdf:type schema:CreativeWork
149 https://doi.org/10.1016/s1076-6332(03)00380-5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1044210357
150 rdf:type schema:CreativeWork
151 https://doi.org/10.1109/42.929615 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061171044
152 rdf:type schema:CreativeWork
153 https://doi.org/10.1109/cbms.2007.13 schema:sameAs https://app.dimensions.ai/details/publication/pub.1093305432
154 rdf:type schema:CreativeWork
155 https://doi.org/10.1109/cvprw.2008.4563099 schema:sameAs https://app.dimensions.ai/details/publication/pub.1094305908
156 rdf:type schema:CreativeWork
157 https://doi.org/10.1109/icassp.2007.366133 schema:sameAs https://app.dimensions.ai/details/publication/pub.1095113501
158 rdf:type schema:CreativeWork
159 https://doi.org/10.1109/isbi.2010.5490285 schema:sameAs https://app.dimensions.ai/details/publication/pub.1093887215
160 rdf:type schema:CreativeWork
161 https://doi.org/10.1109/itab.2010.5687763 schema:sameAs https://app.dimensions.ai/details/publication/pub.1094702446
162 rdf:type schema:CreativeWork
163 https://doi.org/10.1109/tmi.2011.2171357 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061695812
164 rdf:type schema:CreativeWork
165 https://doi.org/10.1118/1.1597431 schema:sameAs https://app.dimensions.ai/details/publication/pub.1030250710
166 rdf:type schema:CreativeWork
167 https://doi.org/10.1118/1.2207131 schema:sameAs https://app.dimensions.ai/details/publication/pub.1023719759
168 rdf:type schema:CreativeWork
169 https://doi.org/10.1118/1.3003066 schema:sameAs https://app.dimensions.ai/details/publication/pub.1013241548
170 rdf:type schema:CreativeWork
171 https://doi.org/10.1118/1.3222872 schema:sameAs https://app.dimensions.ai/details/publication/pub.1020826779
172 rdf:type schema:CreativeWork
173 https://doi.org/10.1148/radiol.2361031674 schema:sameAs https://app.dimensions.ai/details/publication/pub.1050651943
174 rdf:type schema:CreativeWork
175 https://doi.org/10.1148/rg.252045070 schema:sameAs https://app.dimensions.ai/details/publication/pub.1018027538
176 rdf:type schema:CreativeWork
177 https://doi.org/10.1155/2014/479154 schema:sameAs https://app.dimensions.ai/details/publication/pub.1015610631
178 rdf:type schema:CreativeWork
179 https://www.grid.ac/institutes/grid.214572.7 schema:alternateName University of Iowa
180 schema:name Dept. of Electrical and Computer Engineering, The University of Iowa, USA
181 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...