Segmentation of Lungs with Interstitial Lung Disease in CT Scans: A TV-L1 Based Texture Analysis Approach View Full Text


Ontology type: schema:Chapter     


Chapter Info

DATE

2014

AUTHORS

Gurman Gill , Reinhard R. Beichel

ABSTRACT

Lung segmentation methods are important for automated lung image analysis tasks such as quantification of lung diseases. In this paper, we describe a method for segmentation of lungs with interstitial lung disease (ILD). In thoracic CT scans, such lungs are characterized by the presence of texture patterns like honeycombing, which makes lung segmentation difficult. We employ a 3D total variation L1 (TV-L1) based texture analysis approach to extract these patterns and attenuate the density of the corresponding voxels in the CT scan. The modified CT scan is then utilized as input to an existing 3D robust active shape model based lung segmentation method. The proposed method was evaluated on 77 CT scans of lungs with and without ILD. On cases with ILD, our method obtained an average volumetric overlap of 0.95±0.02, which was statistically significantly better than two other approaches. The TV-L1 texture analysis utilizes GPUs, making our method fast. More... »

PAGES

511-520

Book

TITLE

Advances in Visual Computing

ISBN

978-3-319-14248-7
978-3-319-14249-4

Author Affiliations

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/978-3-319-14249-4_48

DOI

http://dx.doi.org/10.1007/978-3-319-14249-4_48

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1037635700


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0801", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Artificial Intelligence and Image Processing", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/08", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Information and Computing Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "University of Iowa", 
          "id": "https://www.grid.ac/institutes/grid.214572.7", 
          "name": [
            "Dept. of Electrical and Computer Engineering, The University of Iowa, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Gill", 
        "givenName": "Gurman", 
        "id": "sg:person.01251117710.54", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01251117710.54"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of Iowa", 
          "id": "https://www.grid.ac/institutes/grid.214572.7", 
          "name": [
            "Dept. of Electrical and Computer Engineering, The University of Iowa, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Beichel", 
        "givenName": "Reinhard R.", 
        "id": "sg:person.0712077707.42", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0712077707.42"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1016/j.acra.2007.03.009", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1003121508"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1118/1.3003066", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1013241548"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1155/2014/479154", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1015610631"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1148/rg.252045070", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1018027538"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1118/1.3222872", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1020826779"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1118/1.2207131", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1023719759"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0167-2789(92)90242-f", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1030232634"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0167-2789(92)90242-f", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1030232634"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1118/1.1597431", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1030250710"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.acra.2004.06.005", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1041310609"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s1076-6332(03)00380-5", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1044210357"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s1076-6332(03)00380-5", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1044210357"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1148/radiol.2361031674", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1050651943"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/42.929615", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061171044"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/tmi.2011.2171357", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061695812"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/cbms.2007.13", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1093305432"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/isbi.2010.5490285", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1093887215"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/cvprw.2008.4563099", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1094305908"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/itab.2010.5687763", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1094702446"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/icassp.2007.366133", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1095113501"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2014", 
    "datePublishedReg": "2014-01-01", 
    "description": "Lung segmentation methods are important for automated lung image analysis tasks such as quantification of lung diseases. In this paper, we describe a method for segmentation of lungs with interstitial lung disease (ILD). In thoracic CT scans, such lungs are characterized by the presence of texture patterns like honeycombing, which makes lung segmentation difficult. We employ a 3D total variation L1 (TV-L1) based texture analysis approach to extract these patterns and attenuate the density of the corresponding voxels in the CT scan. The modified CT scan is then utilized as input to an existing 3D robust active shape model based lung segmentation method. The proposed method was evaluated on 77 CT scans of lungs with and without ILD. On cases with ILD, our method obtained an average volumetric overlap of 0.95\u00b10.02, which was statistically significantly better than two other approaches. The TV-L1 texture analysis utilizes GPUs, making our method fast.", 
    "editor": [
      {
        "familyName": "Bebis", 
        "givenName": "George", 
        "type": "Person"
      }, 
      {
        "familyName": "Boyle", 
        "givenName": "Richard", 
        "type": "Person"
      }, 
      {
        "familyName": "Parvin", 
        "givenName": "Bahram", 
        "type": "Person"
      }, 
      {
        "familyName": "Koracin", 
        "givenName": "Darko", 
        "type": "Person"
      }, 
      {
        "familyName": "McMahan", 
        "givenName": "Ryan", 
        "type": "Person"
      }, 
      {
        "familyName": "Jerald", 
        "givenName": "Jason", 
        "type": "Person"
      }, 
      {
        "familyName": "Zhang", 
        "givenName": "Hui", 
        "type": "Person"
      }, 
      {
        "familyName": "Drucker", 
        "givenName": "Steven M.", 
        "type": "Person"
      }, 
      {
        "familyName": "Kambhamettu", 
        "givenName": "Chandra", 
        "type": "Person"
      }, 
      {
        "familyName": "El Choubassi", 
        "givenName": "Maha", 
        "type": "Person"
      }, 
      {
        "familyName": "Deng", 
        "givenName": "Zhigang", 
        "type": "Person"
      }, 
      {
        "familyName": "Carlson", 
        "givenName": "Mark", 
        "type": "Person"
      }
    ], 
    "genre": "chapter", 
    "id": "sg:pub.10.1007/978-3-319-14249-4_48", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": {
      "isbn": [
        "978-3-319-14248-7", 
        "978-3-319-14249-4"
      ], 
      "name": "Advances in Visual Computing", 
      "type": "Book"
    }, 
    "name": "Segmentation of Lungs with Interstitial Lung Disease in CT Scans: A TV-L1 Based Texture Analysis Approach", 
    "pagination": "511-520", 
    "productId": [
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/978-3-319-14249-4_48"
        ]
      }, 
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "b34911068e544d6ca14b2912fd88a22fe6ab46ff1e57d2ee139fcf7e1440b18e"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1037635700"
        ]
      }
    ], 
    "publisher": {
      "location": "Cham", 
      "name": "Springer International Publishing", 
      "type": "Organisation"
    }, 
    "sameAs": [
      "https://doi.org/10.1007/978-3-319-14249-4_48", 
      "https://app.dimensions.ai/details/publication/pub.1037635700"
    ], 
    "sdDataset": "chapters", 
    "sdDatePublished": "2019-04-16T00:50", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8700_00000266.jsonl", 
    "type": "Chapter", 
    "url": "http://link.springer.com/10.1007/978-3-319-14249-4_48"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/978-3-319-14249-4_48'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/978-3-319-14249-4_48'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/978-3-319-14249-4_48'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/978-3-319-14249-4_48'


 

This table displays all metadata directly associated to this object as RDF triples.

181 TRIPLES      23 PREDICATES      45 URIs      20 LITERALS      8 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/978-3-319-14249-4_48 schema:about anzsrc-for:08
2 anzsrc-for:0801
3 schema:author N54e690ea64bd4615a213415e462e745f
4 schema:citation https://doi.org/10.1016/0167-2789(92)90242-f
5 https://doi.org/10.1016/j.acra.2004.06.005
6 https://doi.org/10.1016/j.acra.2007.03.009
7 https://doi.org/10.1016/s1076-6332(03)00380-5
8 https://doi.org/10.1109/42.929615
9 https://doi.org/10.1109/cbms.2007.13
10 https://doi.org/10.1109/cvprw.2008.4563099
11 https://doi.org/10.1109/icassp.2007.366133
12 https://doi.org/10.1109/isbi.2010.5490285
13 https://doi.org/10.1109/itab.2010.5687763
14 https://doi.org/10.1109/tmi.2011.2171357
15 https://doi.org/10.1118/1.1597431
16 https://doi.org/10.1118/1.2207131
17 https://doi.org/10.1118/1.3003066
18 https://doi.org/10.1118/1.3222872
19 https://doi.org/10.1148/radiol.2361031674
20 https://doi.org/10.1148/rg.252045070
21 https://doi.org/10.1155/2014/479154
22 schema:datePublished 2014
23 schema:datePublishedReg 2014-01-01
24 schema:description Lung segmentation methods are important for automated lung image analysis tasks such as quantification of lung diseases. In this paper, we describe a method for segmentation of lungs with interstitial lung disease (ILD). In thoracic CT scans, such lungs are characterized by the presence of texture patterns like honeycombing, which makes lung segmentation difficult. We employ a 3D total variation L1 (TV-L1) based texture analysis approach to extract these patterns and attenuate the density of the corresponding voxels in the CT scan. The modified CT scan is then utilized as input to an existing 3D robust active shape model based lung segmentation method. The proposed method was evaluated on 77 CT scans of lungs with and without ILD. On cases with ILD, our method obtained an average volumetric overlap of 0.95±0.02, which was statistically significantly better than two other approaches. The TV-L1 texture analysis utilizes GPUs, making our method fast.
25 schema:editor N109964b0259f4164a148670f09126713
26 schema:genre chapter
27 schema:inLanguage en
28 schema:isAccessibleForFree false
29 schema:isPartOf N8e890a279c14419580ba576cf8c648da
30 schema:name Segmentation of Lungs with Interstitial Lung Disease in CT Scans: A TV-L1 Based Texture Analysis Approach
31 schema:pagination 511-520
32 schema:productId N2c0d8e94fbb44abfb6c2af812be27a0f
33 Na69fd1dc18d24c55b8202a0ab7cb0dc2
34 Ne37e3a6fe00a4a448f39c548bb6712c2
35 schema:publisher Na48b2c30e00a45f498d5b6dbd05cb68e
36 schema:sameAs https://app.dimensions.ai/details/publication/pub.1037635700
37 https://doi.org/10.1007/978-3-319-14249-4_48
38 schema:sdDatePublished 2019-04-16T00:50
39 schema:sdLicense https://scigraph.springernature.com/explorer/license/
40 schema:sdPublisher Nf25ee3cf31a648359aa3a836d1b32952
41 schema:url http://link.springer.com/10.1007/978-3-319-14249-4_48
42 sgo:license sg:explorer/license/
43 sgo:sdDataset chapters
44 rdf:type schema:Chapter
45 N096df859f81c436cb37d61dee4b0afb0 schema:familyName Parvin
46 schema:givenName Bahram
47 rdf:type schema:Person
48 N09a92d784cb342d89e1d4323145bf3ac rdf:first sg:person.0712077707.42
49 rdf:rest rdf:nil
50 N0a2d250a49b341f9a7153c108085a3c0 schema:familyName McMahan
51 schema:givenName Ryan
52 rdf:type schema:Person
53 N109964b0259f4164a148670f09126713 rdf:first N78d85b1bc2e24fc8822b738e29f41fae
54 rdf:rest N350e6f300e844a429e3dba0b50b9194e
55 N160cc73e53d1478c9239ba0960e6a96a schema:familyName El Choubassi
56 schema:givenName Maha
57 rdf:type schema:Person
58 N2c0d8e94fbb44abfb6c2af812be27a0f schema:name doi
59 schema:value 10.1007/978-3-319-14249-4_48
60 rdf:type schema:PropertyValue
61 N350e6f300e844a429e3dba0b50b9194e rdf:first N4f8efe6cfc3345579fd14563dd0fd80d
62 rdf:rest Nf4d6fcc7bec649418c07956de2e2012b
63 N395c3673583a42b4a77c6b2300b150d1 rdf:first Nab5d47784c9047c897dc6828cb3ba777
64 rdf:rest Ncd455a14c35c4b2080ebb88c05185b9f
65 N42ab9cb7abcc448ba8174f287534e49e schema:familyName Jerald
66 schema:givenName Jason
67 rdf:type schema:Person
68 N4f8efe6cfc3345579fd14563dd0fd80d schema:familyName Boyle
69 schema:givenName Richard
70 rdf:type schema:Person
71 N54e690ea64bd4615a213415e462e745f rdf:first sg:person.01251117710.54
72 rdf:rest N09a92d784cb342d89e1d4323145bf3ac
73 N5a1344a6b4bf4dd9b15d0d00b85e87e7 rdf:first N160cc73e53d1478c9239ba0960e6a96a
74 rdf:rest N77648948056a4d9b926734fc425dcbcc
75 N62e403d15ad7413eacafe8aeef3c813e rdf:first N0a2d250a49b341f9a7153c108085a3c0
76 rdf:rest Nebfd975a47db4c81977bf81b0e645a39
77 N6376ff5fb3e34022b5d1c2bdbc7a89ec schema:familyName Deng
78 schema:givenName Zhigang
79 rdf:type schema:Person
80 N77648948056a4d9b926734fc425dcbcc rdf:first N6376ff5fb3e34022b5d1c2bdbc7a89ec
81 rdf:rest N9736bb37b97e49a195102fc6d7cfbc64
82 N78a0460470ae4b8baa96146e5e9928b1 schema:familyName Koracin
83 schema:givenName Darko
84 rdf:type schema:Person
85 N78d85b1bc2e24fc8822b738e29f41fae schema:familyName Bebis
86 schema:givenName George
87 rdf:type schema:Person
88 N8e890a279c14419580ba576cf8c648da schema:isbn 978-3-319-14248-7
89 978-3-319-14249-4
90 schema:name Advances in Visual Computing
91 rdf:type schema:Book
92 N9736bb37b97e49a195102fc6d7cfbc64 rdf:first Nbd7415f0b7574e5995b5077f335839e5
93 rdf:rest rdf:nil
94 Na0c1280eaafd4e0abaaf234d2b350a03 rdf:first N78a0460470ae4b8baa96146e5e9928b1
95 rdf:rest N62e403d15ad7413eacafe8aeef3c813e
96 Na48b2c30e00a45f498d5b6dbd05cb68e schema:location Cham
97 schema:name Springer International Publishing
98 rdf:type schema:Organisation
99 Na69fd1dc18d24c55b8202a0ab7cb0dc2 schema:name readcube_id
100 schema:value b34911068e544d6ca14b2912fd88a22fe6ab46ff1e57d2ee139fcf7e1440b18e
101 rdf:type schema:PropertyValue
102 Nab5d47784c9047c897dc6828cb3ba777 schema:familyName Zhang
103 schema:givenName Hui
104 rdf:type schema:Person
105 Nb3fc2b4547ac4dbabeb833eee031e9ca schema:familyName Drucker
106 schema:givenName Steven M.
107 rdf:type schema:Person
108 Nbd7415f0b7574e5995b5077f335839e5 schema:familyName Carlson
109 schema:givenName Mark
110 rdf:type schema:Person
111 Ncd455a14c35c4b2080ebb88c05185b9f rdf:first Nb3fc2b4547ac4dbabeb833eee031e9ca
112 rdf:rest Ncf4e3d1a84794ba39e71eeaeae252d35
113 Ncf4e3d1a84794ba39e71eeaeae252d35 rdf:first Nf44d659ec7f84738ab8587a93b04d0d1
114 rdf:rest N5a1344a6b4bf4dd9b15d0d00b85e87e7
115 Ne37e3a6fe00a4a448f39c548bb6712c2 schema:name dimensions_id
116 schema:value pub.1037635700
117 rdf:type schema:PropertyValue
118 Nebfd975a47db4c81977bf81b0e645a39 rdf:first N42ab9cb7abcc448ba8174f287534e49e
119 rdf:rest N395c3673583a42b4a77c6b2300b150d1
120 Nf25ee3cf31a648359aa3a836d1b32952 schema:name Springer Nature - SN SciGraph project
121 rdf:type schema:Organization
122 Nf44d659ec7f84738ab8587a93b04d0d1 schema:familyName Kambhamettu
123 schema:givenName Chandra
124 rdf:type schema:Person
125 Nf4d6fcc7bec649418c07956de2e2012b rdf:first N096df859f81c436cb37d61dee4b0afb0
126 rdf:rest Na0c1280eaafd4e0abaaf234d2b350a03
127 anzsrc-for:08 schema:inDefinedTermSet anzsrc-for:
128 schema:name Information and Computing Sciences
129 rdf:type schema:DefinedTerm
130 anzsrc-for:0801 schema:inDefinedTermSet anzsrc-for:
131 schema:name Artificial Intelligence and Image Processing
132 rdf:type schema:DefinedTerm
133 sg:person.01251117710.54 schema:affiliation https://www.grid.ac/institutes/grid.214572.7
134 schema:familyName Gill
135 schema:givenName Gurman
136 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01251117710.54
137 rdf:type schema:Person
138 sg:person.0712077707.42 schema:affiliation https://www.grid.ac/institutes/grid.214572.7
139 schema:familyName Beichel
140 schema:givenName Reinhard R.
141 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0712077707.42
142 rdf:type schema:Person
143 https://doi.org/10.1016/0167-2789(92)90242-f schema:sameAs https://app.dimensions.ai/details/publication/pub.1030232634
144 rdf:type schema:CreativeWork
145 https://doi.org/10.1016/j.acra.2004.06.005 schema:sameAs https://app.dimensions.ai/details/publication/pub.1041310609
146 rdf:type schema:CreativeWork
147 https://doi.org/10.1016/j.acra.2007.03.009 schema:sameAs https://app.dimensions.ai/details/publication/pub.1003121508
148 rdf:type schema:CreativeWork
149 https://doi.org/10.1016/s1076-6332(03)00380-5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1044210357
150 rdf:type schema:CreativeWork
151 https://doi.org/10.1109/42.929615 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061171044
152 rdf:type schema:CreativeWork
153 https://doi.org/10.1109/cbms.2007.13 schema:sameAs https://app.dimensions.ai/details/publication/pub.1093305432
154 rdf:type schema:CreativeWork
155 https://doi.org/10.1109/cvprw.2008.4563099 schema:sameAs https://app.dimensions.ai/details/publication/pub.1094305908
156 rdf:type schema:CreativeWork
157 https://doi.org/10.1109/icassp.2007.366133 schema:sameAs https://app.dimensions.ai/details/publication/pub.1095113501
158 rdf:type schema:CreativeWork
159 https://doi.org/10.1109/isbi.2010.5490285 schema:sameAs https://app.dimensions.ai/details/publication/pub.1093887215
160 rdf:type schema:CreativeWork
161 https://doi.org/10.1109/itab.2010.5687763 schema:sameAs https://app.dimensions.ai/details/publication/pub.1094702446
162 rdf:type schema:CreativeWork
163 https://doi.org/10.1109/tmi.2011.2171357 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061695812
164 rdf:type schema:CreativeWork
165 https://doi.org/10.1118/1.1597431 schema:sameAs https://app.dimensions.ai/details/publication/pub.1030250710
166 rdf:type schema:CreativeWork
167 https://doi.org/10.1118/1.2207131 schema:sameAs https://app.dimensions.ai/details/publication/pub.1023719759
168 rdf:type schema:CreativeWork
169 https://doi.org/10.1118/1.3003066 schema:sameAs https://app.dimensions.ai/details/publication/pub.1013241548
170 rdf:type schema:CreativeWork
171 https://doi.org/10.1118/1.3222872 schema:sameAs https://app.dimensions.ai/details/publication/pub.1020826779
172 rdf:type schema:CreativeWork
173 https://doi.org/10.1148/radiol.2361031674 schema:sameAs https://app.dimensions.ai/details/publication/pub.1050651943
174 rdf:type schema:CreativeWork
175 https://doi.org/10.1148/rg.252045070 schema:sameAs https://app.dimensions.ai/details/publication/pub.1018027538
176 rdf:type schema:CreativeWork
177 https://doi.org/10.1155/2014/479154 schema:sameAs https://app.dimensions.ai/details/publication/pub.1015610631
178 rdf:type schema:CreativeWork
179 https://www.grid.ac/institutes/grid.214572.7 schema:alternateName University of Iowa
180 schema:name Dept. of Electrical and Computer Engineering, The University of Iowa, USA
181 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...