Atlas-Based Registration for Accurate Segmentation of Thoracic and Lumbar Vertebrae in CT Data View Full Text


Ontology type: schema:Chapter     


Chapter Info

DATE

2015

AUTHORS

Daniel Forsberg

ABSTRACT

Segmentation of the vertebrae in the spine is of relevance to many medical applications related to the spine. This paper describes a method based upon atlas-based registration for achieving an accurate segmentation of the thoracic and the lumbar vertebrae in the spine as imaged by computed tomography. The method has been evaluated on ten data sets provided as a part of the segmentation challenge hosted by the 2nd MICCAI workshop on Computational Methods and Clinical Applications for Spine Imaging. An average point-to-surface error of \(1.05\,\pm \,0.65\) mm and a mean DICE coefficient of \(0.94\,\pm \,0.03\) were obtained when comparing the computed segmentations with ground truth segmentations. These results are highly competitive when compared to the results of earlier presented methods. More... »

PAGES

49-59

References to SciGraph publications

  • 2010. Hierarchical Segmentation and Identification of Thoracic Vertebra Using Learning-Based Edge Detection and Coarse-to-Fine Deformable Model in MEDICAL IMAGE COMPUTING AND COMPUTER-ASSISTED INTERVENTION – MICCAI 2010
  • 2008. Modality-Independent Determination of Vertebral Position and Rotation in 3D in MEDICAL IMAGING AND AUGMENTED REALITY
  • 2012. Detection of Vertebral Body Fractures Based on Cortical Shell Unwrapping in MEDICAL IMAGE COMPUTING AND COMPUTER-ASSISTED INTERVENTION – MICCAI 2012
  • 2009-02. A Fast and Log-Euclidean Polyaffine Framework for Locally Linear Registration in JOURNAL OF MATHEMATICAL IMAGING AND VISION
  • 2013-12. An improved level set method for vertebra CT image segmentation in BIOMEDICAL ENGINEERING ONLINE
  • Book

    TITLE

    Recent Advances in Computational Methods and Clinical Applications for Spine Imaging

    ISBN

    978-3-319-14147-3
    978-3-319-14148-0

    Identifiers

    URI

    http://scigraph.springernature.com/pub.10.1007/978-3-319-14148-0_5

    DOI

    http://dx.doi.org/10.1007/978-3-319-14148-0_5

    DIMENSIONS

    https://app.dimensions.ai/details/publication/pub.1003540138


    Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
    Incoming Citations Browse incoming citations for this publication using opencitations.net

    JSON-LD is the canonical representation for SciGraph data.

    TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

    [
      {
        "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
        "about": [
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0801", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Artificial Intelligence and Image Processing", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/08", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Information and Computing Sciences", 
            "type": "DefinedTerm"
          }
        ], 
        "author": [
          {
            "affiliation": {
              "name": [
                "Center for Medical Image Science and Visualization (CMIV), Link\u00f6ping University, Link\u00f6ping University Hospital, SE-581 85\u00a0Link\u00f6ping, Sweden"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Forsberg", 
            "givenName": "Daniel", 
            "id": "sg:person.01103451345.74", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01103451345.74"
            ], 
            "type": "Person"
          }
        ], 
        "citation": [
          {
            "id": "sg:pub.10.1007/978-3-540-79982-5_10", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1008595338", 
              "https://doi.org/10.1007/978-3-540-79982-5_10"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/978-3-642-15705-9_3", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1027646597", 
              "https://doi.org/10.1007/978-3-642-15705-9_3"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/978-3-642-15705-9_3", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1027646597", 
              "https://doi.org/10.1007/978-3-642-15705-9_3"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/978-3-642-33454-2_63", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1031708973", 
              "https://doi.org/10.1007/978-3-642-33454-2_63"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1186/1475-925x-12-48", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1034702349", 
              "https://doi.org/10.1186/1475-925x-12-48"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.media.2009.02.004", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1039973389"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.compmedimag.2009.02.006", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1042509523"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.cmpb.2011.07.015", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1044389178"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s10851-008-0135-9", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1048497642", 
              "https://doi.org/10.1007/s10851-008-0135-9"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s10851-008-0135-9", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1048497642", 
              "https://doi.org/10.1007/s10851-008-0135-9"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1088/0031-9155/58/6/1775", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1059030171"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1088/0031-9155/59/2/311", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1059030482"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1109/tbme.2012.2225833", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1061529013"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1109/tmi.2004.828354", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1061694590"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1109/tmi.2013.2268424", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1061696131"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1109/isbi.2009.5193259", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1093593486"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1109/icip.2005.1530283", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1095410457"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1109/icip.2005.1530283", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1095410457"
            ], 
            "type": "CreativeWork"
          }
        ], 
        "datePublished": "2015", 
        "datePublishedReg": "2015-01-01", 
        "description": "Segmentation of the vertebrae in the spine is of relevance to many medical applications related to the spine. This paper describes a method based upon atlas-based registration for achieving an accurate segmentation of the thoracic and the lumbar vertebrae in the spine as imaged by computed tomography. The method has been evaluated on ten data sets provided as a part of the segmentation challenge hosted by the 2nd MICCAI workshop on Computational Methods and Clinical Applications for Spine Imaging. An average point-to-surface error of \\(1.05\\,\\pm \\,0.65\\)\u00a0mm and a mean DICE coefficient of \\(0.94\\,\\pm \\,0.03\\) were obtained when comparing the computed segmentations with ground truth segmentations. These results are highly competitive when compared to the results of earlier presented methods.", 
        "editor": [
          {
            "familyName": "Yao", 
            "givenName": "Jianhua", 
            "type": "Person"
          }, 
          {
            "familyName": "Glocker", 
            "givenName": "Ben", 
            "type": "Person"
          }, 
          {
            "familyName": "Klinder", 
            "givenName": "Tobias", 
            "type": "Person"
          }, 
          {
            "familyName": "Li", 
            "givenName": "Shuo", 
            "type": "Person"
          }
        ], 
        "genre": "chapter", 
        "id": "sg:pub.10.1007/978-3-319-14148-0_5", 
        "inLanguage": [
          "en"
        ], 
        "isAccessibleForFree": false, 
        "isPartOf": {
          "isbn": [
            "978-3-319-14147-3", 
            "978-3-319-14148-0"
          ], 
          "name": "Recent Advances in Computational Methods and Clinical Applications for Spine Imaging", 
          "type": "Book"
        }, 
        "name": "Atlas-Based Registration for Accurate Segmentation of Thoracic and Lumbar Vertebrae in CT Data", 
        "pagination": "49-59", 
        "productId": [
          {
            "name": "doi", 
            "type": "PropertyValue", 
            "value": [
              "10.1007/978-3-319-14148-0_5"
            ]
          }, 
          {
            "name": "readcube_id", 
            "type": "PropertyValue", 
            "value": [
              "10dd356584964a14bca3c056b2b2e96da6f61bc2fab373731f6c856395954607"
            ]
          }, 
          {
            "name": "dimensions_id", 
            "type": "PropertyValue", 
            "value": [
              "pub.1003540138"
            ]
          }
        ], 
        "publisher": {
          "location": "Cham", 
          "name": "Springer International Publishing", 
          "type": "Organisation"
        }, 
        "sameAs": [
          "https://doi.org/10.1007/978-3-319-14148-0_5", 
          "https://app.dimensions.ai/details/publication/pub.1003540138"
        ], 
        "sdDataset": "chapters", 
        "sdDatePublished": "2019-04-15T23:49", 
        "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
        "sdPublisher": {
          "name": "Springer Nature - SN SciGraph project", 
          "type": "Organization"
        }, 
        "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8697_00000245.jsonl", 
        "type": "Chapter", 
        "url": "http://link.springer.com/10.1007/978-3-319-14148-0_5"
      }
    ]
     

    Download the RDF metadata as:  json-ld nt turtle xml License info

    HOW TO GET THIS DATA PROGRAMMATICALLY:

    JSON-LD is a popular format for linked data which is fully compatible with JSON.

    curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/978-3-319-14148-0_5'

    N-Triples is a line-based linked data format ideal for batch operations.

    curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/978-3-319-14148-0_5'

    Turtle is a human-readable linked data format.

    curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/978-3-319-14148-0_5'

    RDF/XML is a standard XML format for linked data.

    curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/978-3-319-14148-0_5'


     

    This table displays all metadata directly associated to this object as RDF triples.

    129 TRIPLES      23 PREDICATES      42 URIs      20 LITERALS      8 BLANK NODES

    Subject Predicate Object
    1 sg:pub.10.1007/978-3-319-14148-0_5 schema:about anzsrc-for:08
    2 anzsrc-for:0801
    3 schema:author N880479d106604376932fe28d99cfe933
    4 schema:citation sg:pub.10.1007/978-3-540-79982-5_10
    5 sg:pub.10.1007/978-3-642-15705-9_3
    6 sg:pub.10.1007/978-3-642-33454-2_63
    7 sg:pub.10.1007/s10851-008-0135-9
    8 sg:pub.10.1186/1475-925x-12-48
    9 https://doi.org/10.1016/j.cmpb.2011.07.015
    10 https://doi.org/10.1016/j.compmedimag.2009.02.006
    11 https://doi.org/10.1016/j.media.2009.02.004
    12 https://doi.org/10.1088/0031-9155/58/6/1775
    13 https://doi.org/10.1088/0031-9155/59/2/311
    14 https://doi.org/10.1109/icip.2005.1530283
    15 https://doi.org/10.1109/isbi.2009.5193259
    16 https://doi.org/10.1109/tbme.2012.2225833
    17 https://doi.org/10.1109/tmi.2004.828354
    18 https://doi.org/10.1109/tmi.2013.2268424
    19 schema:datePublished 2015
    20 schema:datePublishedReg 2015-01-01
    21 schema:description Segmentation of the vertebrae in the spine is of relevance to many medical applications related to the spine. This paper describes a method based upon atlas-based registration for achieving an accurate segmentation of the thoracic and the lumbar vertebrae in the spine as imaged by computed tomography. The method has been evaluated on ten data sets provided as a part of the segmentation challenge hosted by the 2nd MICCAI workshop on Computational Methods and Clinical Applications for Spine Imaging. An average point-to-surface error of \(1.05\,\pm \,0.65\) mm and a mean DICE coefficient of \(0.94\,\pm \,0.03\) were obtained when comparing the computed segmentations with ground truth segmentations. These results are highly competitive when compared to the results of earlier presented methods.
    22 schema:editor N85789bcb5cdd41e4b0e3a0bc929583b5
    23 schema:genre chapter
    24 schema:inLanguage en
    25 schema:isAccessibleForFree false
    26 schema:isPartOf N0d5e734802be4034a7ce8248684130fc
    27 schema:name Atlas-Based Registration for Accurate Segmentation of Thoracic and Lumbar Vertebrae in CT Data
    28 schema:pagination 49-59
    29 schema:productId Nab872d8deae54104b67647e0c0c7bb50
    30 Nb37ac33dfb20495aaac1c6436e47f6b7
    31 Nd4d5422075474457a5565a8a1567b3c1
    32 schema:publisher Ne9bd050d44ce403c9ad382c287f251a5
    33 schema:sameAs https://app.dimensions.ai/details/publication/pub.1003540138
    34 https://doi.org/10.1007/978-3-319-14148-0_5
    35 schema:sdDatePublished 2019-04-15T23:49
    36 schema:sdLicense https://scigraph.springernature.com/explorer/license/
    37 schema:sdPublisher Nf1e5aab6e0dd43d097416b8f5091e00f
    38 schema:url http://link.springer.com/10.1007/978-3-319-14148-0_5
    39 sgo:license sg:explorer/license/
    40 sgo:sdDataset chapters
    41 rdf:type schema:Chapter
    42 N0d5e734802be4034a7ce8248684130fc schema:isbn 978-3-319-14147-3
    43 978-3-319-14148-0
    44 schema:name Recent Advances in Computational Methods and Clinical Applications for Spine Imaging
    45 rdf:type schema:Book
    46 N13bec0f1325a4f38b3fd6c06da8ce201 schema:familyName Li
    47 schema:givenName Shuo
    48 rdf:type schema:Person
    49 N36b9f012a0e747a9919c2269de494690 schema:name Center for Medical Image Science and Visualization (CMIV), Linköping University, Linköping University Hospital, SE-581 85 Linköping, Sweden
    50 rdf:type schema:Organization
    51 N38cd9b7d60fe4353b26464ddd3559de2 schema:familyName Glocker
    52 schema:givenName Ben
    53 rdf:type schema:Person
    54 N39f9c17e225e40a6b9d09285175b638b rdf:first N13bec0f1325a4f38b3fd6c06da8ce201
    55 rdf:rest rdf:nil
    56 N3c2256a2aa3c4ef78e72874abb98802b schema:familyName Yao
    57 schema:givenName Jianhua
    58 rdf:type schema:Person
    59 N792177968ec54fd49c7ca3395be9bebb rdf:first N38cd9b7d60fe4353b26464ddd3559de2
    60 rdf:rest N88cdfedff0e94293ba9ad4d230b7b76e
    61 N85789bcb5cdd41e4b0e3a0bc929583b5 rdf:first N3c2256a2aa3c4ef78e72874abb98802b
    62 rdf:rest N792177968ec54fd49c7ca3395be9bebb
    63 N880479d106604376932fe28d99cfe933 rdf:first sg:person.01103451345.74
    64 rdf:rest rdf:nil
    65 N88cdfedff0e94293ba9ad4d230b7b76e rdf:first Na7b84c2586d241df961df3b81c59a78e
    66 rdf:rest N39f9c17e225e40a6b9d09285175b638b
    67 Na7b84c2586d241df961df3b81c59a78e schema:familyName Klinder
    68 schema:givenName Tobias
    69 rdf:type schema:Person
    70 Nab872d8deae54104b67647e0c0c7bb50 schema:name doi
    71 schema:value 10.1007/978-3-319-14148-0_5
    72 rdf:type schema:PropertyValue
    73 Nb37ac33dfb20495aaac1c6436e47f6b7 schema:name readcube_id
    74 schema:value 10dd356584964a14bca3c056b2b2e96da6f61bc2fab373731f6c856395954607
    75 rdf:type schema:PropertyValue
    76 Nd4d5422075474457a5565a8a1567b3c1 schema:name dimensions_id
    77 schema:value pub.1003540138
    78 rdf:type schema:PropertyValue
    79 Ne9bd050d44ce403c9ad382c287f251a5 schema:location Cham
    80 schema:name Springer International Publishing
    81 rdf:type schema:Organisation
    82 Nf1e5aab6e0dd43d097416b8f5091e00f schema:name Springer Nature - SN SciGraph project
    83 rdf:type schema:Organization
    84 anzsrc-for:08 schema:inDefinedTermSet anzsrc-for:
    85 schema:name Information and Computing Sciences
    86 rdf:type schema:DefinedTerm
    87 anzsrc-for:0801 schema:inDefinedTermSet anzsrc-for:
    88 schema:name Artificial Intelligence and Image Processing
    89 rdf:type schema:DefinedTerm
    90 sg:person.01103451345.74 schema:affiliation N36b9f012a0e747a9919c2269de494690
    91 schema:familyName Forsberg
    92 schema:givenName Daniel
    93 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01103451345.74
    94 rdf:type schema:Person
    95 sg:pub.10.1007/978-3-540-79982-5_10 schema:sameAs https://app.dimensions.ai/details/publication/pub.1008595338
    96 https://doi.org/10.1007/978-3-540-79982-5_10
    97 rdf:type schema:CreativeWork
    98 sg:pub.10.1007/978-3-642-15705-9_3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1027646597
    99 https://doi.org/10.1007/978-3-642-15705-9_3
    100 rdf:type schema:CreativeWork
    101 sg:pub.10.1007/978-3-642-33454-2_63 schema:sameAs https://app.dimensions.ai/details/publication/pub.1031708973
    102 https://doi.org/10.1007/978-3-642-33454-2_63
    103 rdf:type schema:CreativeWork
    104 sg:pub.10.1007/s10851-008-0135-9 schema:sameAs https://app.dimensions.ai/details/publication/pub.1048497642
    105 https://doi.org/10.1007/s10851-008-0135-9
    106 rdf:type schema:CreativeWork
    107 sg:pub.10.1186/1475-925x-12-48 schema:sameAs https://app.dimensions.ai/details/publication/pub.1034702349
    108 https://doi.org/10.1186/1475-925x-12-48
    109 rdf:type schema:CreativeWork
    110 https://doi.org/10.1016/j.cmpb.2011.07.015 schema:sameAs https://app.dimensions.ai/details/publication/pub.1044389178
    111 rdf:type schema:CreativeWork
    112 https://doi.org/10.1016/j.compmedimag.2009.02.006 schema:sameAs https://app.dimensions.ai/details/publication/pub.1042509523
    113 rdf:type schema:CreativeWork
    114 https://doi.org/10.1016/j.media.2009.02.004 schema:sameAs https://app.dimensions.ai/details/publication/pub.1039973389
    115 rdf:type schema:CreativeWork
    116 https://doi.org/10.1088/0031-9155/58/6/1775 schema:sameAs https://app.dimensions.ai/details/publication/pub.1059030171
    117 rdf:type schema:CreativeWork
    118 https://doi.org/10.1088/0031-9155/59/2/311 schema:sameAs https://app.dimensions.ai/details/publication/pub.1059030482
    119 rdf:type schema:CreativeWork
    120 https://doi.org/10.1109/icip.2005.1530283 schema:sameAs https://app.dimensions.ai/details/publication/pub.1095410457
    121 rdf:type schema:CreativeWork
    122 https://doi.org/10.1109/isbi.2009.5193259 schema:sameAs https://app.dimensions.ai/details/publication/pub.1093593486
    123 rdf:type schema:CreativeWork
    124 https://doi.org/10.1109/tbme.2012.2225833 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061529013
    125 rdf:type schema:CreativeWork
    126 https://doi.org/10.1109/tmi.2004.828354 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061694590
    127 rdf:type schema:CreativeWork
    128 https://doi.org/10.1109/tmi.2013.2268424 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061696131
    129 rdf:type schema:CreativeWork
     




    Preview window. Press ESC to close (or click here)


    ...