Report of Vertebra Segmentation Challenge in 2014 MICCAI Workshop on Computational Spine Imaging View Full Text


Ontology type: schema:Chapter     


Chapter Info

DATE

2015

AUTHORS

Jianhua Yao , Shuo Li

ABSTRACT

Segmentation is the fundamental step for most spine image analysis tasks. The vertebra segmentation challenge held at the 2014 Computational Spine Imaging Workshop (CSI2014) objectively evaluated the performance of several algorithms segmenting vertebrae in spine CT scans. Five teams participated in the challenge. Ten training data sets and Five test data sets with reference annotation were provided for training and evaluation. Dice coefficient and absolute surface distances were used as the evaluation metrics. The segmentations on both the whole vertebra and its substructures were evaluated. The performances comparisons were assessed in different aspects. The top performers in the challenge achieved Dice coefficient of 0.93 in the upper thoracic, 0.95 in the lower thoracic and 0.96 in the lumbar spine. The strength and weakness of each method are discussed in this paper. More... »

PAGES

247-259

References to SciGraph publications

  • 2015. Interpolation-Based Shape-Constrained Deformable Model Approach for Segmentation of Vertebrae from CT Spine Images in RECENT ADVANCES IN COMPUTATIONAL METHODS AND CLINICAL APPLICATIONS FOR SPINE IMAGING
  • 2015. Vertebrae Segmentation in 3D CT Images Based on a Variational Framework in RECENT ADVANCES IN COMPUTATIONAL METHODS AND CLINICAL APPLICATIONS FOR SPINE IMAGING
  • 2013-12. An improved level set method for vertebra CT image segmentation in BIOMEDICAL ENGINEERING ONLINE
  • 2015. 3D Vertebra Segmentation by Feature Selection Active Shape Model in RECENT ADVANCES IN COMPUTATIONAL METHODS AND CLINICAL APPLICATIONS FOR SPINE IMAGING
  • 2015. Atlas-Based Segmentation of the Thoracic and Lumbar Vertebrae in RECENT ADVANCES IN COMPUTATIONAL METHODS AND CLINICAL APPLICATIONS FOR SPINE IMAGING
  • 2015. Lumbar and Thoracic Spine Segmentation Using a Statistical Multi-object Shape $$+$$ Pose Model in RECENT ADVANCES IN COMPUTATIONAL METHODS AND CLINICAL APPLICATIONS FOR SPINE IMAGING
  • 2010. Hierarchical Segmentation and Identification of Thoracic Vertebra Using Learning-Based Edge Detection and Coarse-to-Fine Deformable Model in MEDICAL IMAGE COMPUTING AND COMPUTER-ASSISTED INTERVENTION – MICCAI 2010
  • 2012. Automatic Localization and Identification of Vertebrae in Arbitrary Field-of-View CT Scans in MEDICAL IMAGE COMPUTING AND COMPUTER-ASSISTED INTERVENTION – MICCAI 2012
  • 2009. Segmentation of Lumbar Vertebrae Using Part-Based Graphs and Active Appearance Models in MEDICAL IMAGE COMPUTING AND COMPUTER-ASSISTED INTERVENTION – MICCAI 2009
  • 2015. Interpolation-Based Detection of Lumbar Vertebrae in CT Spine Images in RECENT ADVANCES IN COMPUTATIONAL METHODS AND CLINICAL APPLICATIONS FOR SPINE IMAGING
  • 2015. Atlas-Based Registration for Accurate Segmentation of Thoracic and Lumbar Vertebrae in CT Data in RECENT ADVANCES IN COMPUTATIONAL METHODS AND CLINICAL APPLICATIONS FOR SPINE IMAGING
  • Book

    TITLE

    Recent Advances in Computational Methods and Clinical Applications for Spine Imaging

    ISBN

    978-3-319-14147-3
    978-3-319-14148-0

    Identifiers

    URI

    http://scigraph.springernature.com/pub.10.1007/978-3-319-14148-0_23

    DOI

    http://dx.doi.org/10.1007/978-3-319-14148-0_23

    DIMENSIONS

    https://app.dimensions.ai/details/publication/pub.1018806438


    Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
    Incoming Citations Browse incoming citations for this publication using opencitations.net

    JSON-LD is the canonical representation for SciGraph data.

    TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

    [
      {
        "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
        "about": [
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0801", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Artificial Intelligence and Image Processing", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/08", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Information and Computing Sciences", 
            "type": "DefinedTerm"
          }
        ], 
        "author": [
          {
            "affiliation": {
              "alternateName": "National Institutes of Health Clinical Center", 
              "id": "https://www.grid.ac/institutes/grid.410305.3", 
              "name": [
                "Imaging Biomarkers and Computer-Aided Detection Laboratory, Radiology and Imaging Sciences, National Institutes of Health Clinical Center, Bethesda, MD\u00a020892, USA"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Yao", 
            "givenName": "Jianhua", 
            "id": "sg:person.012366760067.46", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012366760067.46"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "name": [
                "GE Healthcare, Mississauga, ON, Canada"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Li", 
            "givenName": "Shuo", 
            "id": "sg:person.01333742474.13", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01333742474.13"
            ], 
            "type": "Person"
          }
        ], 
        "citation": [
          {
            "id": "sg:pub.10.1007/978-3-319-14148-0_5", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1003540138", 
              "https://doi.org/10.1007/978-3-319-14148-0_5"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/978-3-319-14148-0_19", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1009837716", 
              "https://doi.org/10.1007/978-3-319-14148-0_19"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/978-3-319-14148-0_18", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1020025597", 
              "https://doi.org/10.1007/978-3-319-14148-0_18"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/978-3-642-33454-2_73", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1025627416", 
              "https://doi.org/10.1007/978-3-642-33454-2_73"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/978-3-642-15705-9_3", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1027646597", 
              "https://doi.org/10.1007/978-3-642-15705-9_3"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/978-3-642-15705-9_3", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1027646597", 
              "https://doi.org/10.1007/978-3-642-15705-9_3"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/978-3-319-14148-0_7", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1029851493", 
              "https://doi.org/10.1007/978-3-319-14148-0_7"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/978-3-642-04271-3_123", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1032514581", 
              "https://doi.org/10.1007/978-3-642-04271-3_123"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1186/1475-925x-12-48", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1034702349", 
              "https://doi.org/10.1186/1475-925x-12-48"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.media.2009.02.004", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1039973389"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.compmedimag.2009.02.006", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1042509523"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.media.2011.01.006", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1044741038"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/978-3-319-14148-0_20", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1048086004", 
              "https://doi.org/10.1007/978-3-319-14148-0_20"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/978-3-319-14148-0_22", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1048752581", 
              "https://doi.org/10.1007/978-3-319-14148-0_22"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/978-3-319-14148-0_21", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1048843196", 
              "https://doi.org/10.1007/978-3-319-14148-0_21"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1109/tbme.2012.2225833", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1061529013"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1109/tmi.2013.2268424", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1061696131"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1109/tmi.2013.2296976", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1061696231"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1109/isbi.2006.1624935", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1094071881"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1109/isbi.2014.6867892", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1094868876"
            ], 
            "type": "CreativeWork"
          }
        ], 
        "datePublished": "2015", 
        "datePublishedReg": "2015-01-01", 
        "description": "Segmentation is the fundamental step for most spine image analysis tasks. The vertebra segmentation challenge held at the 2014 Computational Spine Imaging Workshop (CSI2014) objectively evaluated the performance of several algorithms segmenting vertebrae in spine CT scans. Five teams participated in the challenge. Ten training data sets and Five test data sets with reference annotation were provided for training and evaluation. Dice coefficient and absolute surface distances were used as the evaluation metrics. The segmentations on both the whole vertebra and its substructures were evaluated. The performances comparisons were assessed in different aspects. The top performers in the challenge achieved Dice coefficient of 0.93 in the upper thoracic, 0.95 in the lower thoracic and 0.96 in the lumbar spine. The strength and weakness of each method are discussed in this paper.", 
        "editor": [
          {
            "familyName": "Yao", 
            "givenName": "Jianhua", 
            "type": "Person"
          }, 
          {
            "familyName": "Glocker", 
            "givenName": "Ben", 
            "type": "Person"
          }, 
          {
            "familyName": "Klinder", 
            "givenName": "Tobias", 
            "type": "Person"
          }, 
          {
            "familyName": "Li", 
            "givenName": "Shuo", 
            "type": "Person"
          }
        ], 
        "genre": "chapter", 
        "id": "sg:pub.10.1007/978-3-319-14148-0_23", 
        "inLanguage": [
          "en"
        ], 
        "isAccessibleForFree": false, 
        "isPartOf": {
          "isbn": [
            "978-3-319-14147-3", 
            "978-3-319-14148-0"
          ], 
          "name": "Recent Advances in Computational Methods and Clinical Applications for Spine Imaging", 
          "type": "Book"
        }, 
        "name": "Report of Vertebra Segmentation Challenge in 2014 MICCAI Workshop on Computational Spine Imaging", 
        "pagination": "247-259", 
        "productId": [
          {
            "name": "doi", 
            "type": "PropertyValue", 
            "value": [
              "10.1007/978-3-319-14148-0_23"
            ]
          }, 
          {
            "name": "readcube_id", 
            "type": "PropertyValue", 
            "value": [
              "599b36104c4ce8f09a4d60c1e31de9be4e3b3a3c6146ebd08905f235227ef82f"
            ]
          }, 
          {
            "name": "dimensions_id", 
            "type": "PropertyValue", 
            "value": [
              "pub.1018806438"
            ]
          }
        ], 
        "publisher": {
          "location": "Cham", 
          "name": "Springer International Publishing", 
          "type": "Organisation"
        }, 
        "sameAs": [
          "https://doi.org/10.1007/978-3-319-14148-0_23", 
          "https://app.dimensions.ai/details/publication/pub.1018806438"
        ], 
        "sdDataset": "chapters", 
        "sdDatePublished": "2019-04-15T23:51", 
        "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
        "sdPublisher": {
          "name": "Springer Nature - SN SciGraph project", 
          "type": "Organization"
        }, 
        "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8697_00000254.jsonl", 
        "type": "Chapter", 
        "url": "http://link.springer.com/10.1007/978-3-319-14148-0_23"
      }
    ]
     

    Download the RDF metadata as:  json-ld nt turtle xml License info

    HOW TO GET THIS DATA PROGRAMMATICALLY:

    JSON-LD is a popular format for linked data which is fully compatible with JSON.

    curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/978-3-319-14148-0_23'

    N-Triples is a line-based linked data format ideal for batch operations.

    curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/978-3-319-14148-0_23'

    Turtle is a human-readable linked data format.

    curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/978-3-319-14148-0_23'

    RDF/XML is a standard XML format for linked data.

    curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/978-3-319-14148-0_23'


     

    This table displays all metadata directly associated to this object as RDF triples.

    157 TRIPLES      23 PREDICATES      46 URIs      20 LITERALS      8 BLANK NODES

    Subject Predicate Object
    1 sg:pub.10.1007/978-3-319-14148-0_23 schema:about anzsrc-for:08
    2 anzsrc-for:0801
    3 schema:author N1a70b4dd953343639cf72f8f0848fe28
    4 schema:citation sg:pub.10.1007/978-3-319-14148-0_18
    5 sg:pub.10.1007/978-3-319-14148-0_19
    6 sg:pub.10.1007/978-3-319-14148-0_20
    7 sg:pub.10.1007/978-3-319-14148-0_21
    8 sg:pub.10.1007/978-3-319-14148-0_22
    9 sg:pub.10.1007/978-3-319-14148-0_5
    10 sg:pub.10.1007/978-3-319-14148-0_7
    11 sg:pub.10.1007/978-3-642-04271-3_123
    12 sg:pub.10.1007/978-3-642-15705-9_3
    13 sg:pub.10.1007/978-3-642-33454-2_73
    14 sg:pub.10.1186/1475-925x-12-48
    15 https://doi.org/10.1016/j.compmedimag.2009.02.006
    16 https://doi.org/10.1016/j.media.2009.02.004
    17 https://doi.org/10.1016/j.media.2011.01.006
    18 https://doi.org/10.1109/isbi.2006.1624935
    19 https://doi.org/10.1109/isbi.2014.6867892
    20 https://doi.org/10.1109/tbme.2012.2225833
    21 https://doi.org/10.1109/tmi.2013.2268424
    22 https://doi.org/10.1109/tmi.2013.2296976
    23 schema:datePublished 2015
    24 schema:datePublishedReg 2015-01-01
    25 schema:description Segmentation is the fundamental step for most spine image analysis tasks. The vertebra segmentation challenge held at the 2014 Computational Spine Imaging Workshop (CSI2014) objectively evaluated the performance of several algorithms segmenting vertebrae in spine CT scans. Five teams participated in the challenge. Ten training data sets and Five test data sets with reference annotation were provided for training and evaluation. Dice coefficient and absolute surface distances were used as the evaluation metrics. The segmentations on both the whole vertebra and its substructures were evaluated. The performances comparisons were assessed in different aspects. The top performers in the challenge achieved Dice coefficient of 0.93 in the upper thoracic, 0.95 in the lower thoracic and 0.96 in the lumbar spine. The strength and weakness of each method are discussed in this paper.
    26 schema:editor Ncbef1bd32d41400ea526c843570063a2
    27 schema:genre chapter
    28 schema:inLanguage en
    29 schema:isAccessibleForFree false
    30 schema:isPartOf Ndbf0add811784b7dbabe22096a594140
    31 schema:name Report of Vertebra Segmentation Challenge in 2014 MICCAI Workshop on Computational Spine Imaging
    32 schema:pagination 247-259
    33 schema:productId N1d10f6ca6aa6465eaab3d8b743757f37
    34 N504c6e5a5dd04ae0b83ffd05fddd888f
    35 Nb8a286df880049dfa94af63dd71f622b
    36 schema:publisher Neea8838600d54072bcc57a57913a8903
    37 schema:sameAs https://app.dimensions.ai/details/publication/pub.1018806438
    38 https://doi.org/10.1007/978-3-319-14148-0_23
    39 schema:sdDatePublished 2019-04-15T23:51
    40 schema:sdLicense https://scigraph.springernature.com/explorer/license/
    41 schema:sdPublisher N7d615dcc60d246e581a253662c70d071
    42 schema:url http://link.springer.com/10.1007/978-3-319-14148-0_23
    43 sgo:license sg:explorer/license/
    44 sgo:sdDataset chapters
    45 rdf:type schema:Chapter
    46 N182b6c09d9d0402aa6cf07cb35153b5a schema:familyName Li
    47 schema:givenName Shuo
    48 rdf:type schema:Person
    49 N1a70b4dd953343639cf72f8f0848fe28 rdf:first sg:person.012366760067.46
    50 rdf:rest Na2aeed69c4cc4b099fc9f355d509ae83
    51 N1d10f6ca6aa6465eaab3d8b743757f37 schema:name dimensions_id
    52 schema:value pub.1018806438
    53 rdf:type schema:PropertyValue
    54 N2c6561adc6d441bcb9ce464ccc1874ac rdf:first N54663fe118a84c78b73e738e7da5984c
    55 rdf:rest N9b2dda444a224ab7bfc8e4e57df8dc6c
    56 N504c6e5a5dd04ae0b83ffd05fddd888f schema:name doi
    57 schema:value 10.1007/978-3-319-14148-0_23
    58 rdf:type schema:PropertyValue
    59 N54663fe118a84c78b73e738e7da5984c schema:familyName Klinder
    60 schema:givenName Tobias
    61 rdf:type schema:Person
    62 N7d615dcc60d246e581a253662c70d071 schema:name Springer Nature - SN SciGraph project
    63 rdf:type schema:Organization
    64 N8e59e2d9fb484ed1b664ab1ac2cb87a9 rdf:first Nc5aa2258380b40e09f8f1ca9602eaabf
    65 rdf:rest N2c6561adc6d441bcb9ce464ccc1874ac
    66 N9473c604df6c4745b827612b0feb971f schema:name GE Healthcare, Mississauga, ON, Canada
    67 rdf:type schema:Organization
    68 N9b2dda444a224ab7bfc8e4e57df8dc6c rdf:first N182b6c09d9d0402aa6cf07cb35153b5a
    69 rdf:rest rdf:nil
    70 Na2aeed69c4cc4b099fc9f355d509ae83 rdf:first sg:person.01333742474.13
    71 rdf:rest rdf:nil
    72 Nb8a286df880049dfa94af63dd71f622b schema:name readcube_id
    73 schema:value 599b36104c4ce8f09a4d60c1e31de9be4e3b3a3c6146ebd08905f235227ef82f
    74 rdf:type schema:PropertyValue
    75 Nc5aa2258380b40e09f8f1ca9602eaabf schema:familyName Glocker
    76 schema:givenName Ben
    77 rdf:type schema:Person
    78 Ncbef1bd32d41400ea526c843570063a2 rdf:first Nf5dbd1e2546e4d159f7b6914909dec15
    79 rdf:rest N8e59e2d9fb484ed1b664ab1ac2cb87a9
    80 Ndbf0add811784b7dbabe22096a594140 schema:isbn 978-3-319-14147-3
    81 978-3-319-14148-0
    82 schema:name Recent Advances in Computational Methods and Clinical Applications for Spine Imaging
    83 rdf:type schema:Book
    84 Neea8838600d54072bcc57a57913a8903 schema:location Cham
    85 schema:name Springer International Publishing
    86 rdf:type schema:Organisation
    87 Nf5dbd1e2546e4d159f7b6914909dec15 schema:familyName Yao
    88 schema:givenName Jianhua
    89 rdf:type schema:Person
    90 anzsrc-for:08 schema:inDefinedTermSet anzsrc-for:
    91 schema:name Information and Computing Sciences
    92 rdf:type schema:DefinedTerm
    93 anzsrc-for:0801 schema:inDefinedTermSet anzsrc-for:
    94 schema:name Artificial Intelligence and Image Processing
    95 rdf:type schema:DefinedTerm
    96 sg:person.012366760067.46 schema:affiliation https://www.grid.ac/institutes/grid.410305.3
    97 schema:familyName Yao
    98 schema:givenName Jianhua
    99 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012366760067.46
    100 rdf:type schema:Person
    101 sg:person.01333742474.13 schema:affiliation N9473c604df6c4745b827612b0feb971f
    102 schema:familyName Li
    103 schema:givenName Shuo
    104 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01333742474.13
    105 rdf:type schema:Person
    106 sg:pub.10.1007/978-3-319-14148-0_18 schema:sameAs https://app.dimensions.ai/details/publication/pub.1020025597
    107 https://doi.org/10.1007/978-3-319-14148-0_18
    108 rdf:type schema:CreativeWork
    109 sg:pub.10.1007/978-3-319-14148-0_19 schema:sameAs https://app.dimensions.ai/details/publication/pub.1009837716
    110 https://doi.org/10.1007/978-3-319-14148-0_19
    111 rdf:type schema:CreativeWork
    112 sg:pub.10.1007/978-3-319-14148-0_20 schema:sameAs https://app.dimensions.ai/details/publication/pub.1048086004
    113 https://doi.org/10.1007/978-3-319-14148-0_20
    114 rdf:type schema:CreativeWork
    115 sg:pub.10.1007/978-3-319-14148-0_21 schema:sameAs https://app.dimensions.ai/details/publication/pub.1048843196
    116 https://doi.org/10.1007/978-3-319-14148-0_21
    117 rdf:type schema:CreativeWork
    118 sg:pub.10.1007/978-3-319-14148-0_22 schema:sameAs https://app.dimensions.ai/details/publication/pub.1048752581
    119 https://doi.org/10.1007/978-3-319-14148-0_22
    120 rdf:type schema:CreativeWork
    121 sg:pub.10.1007/978-3-319-14148-0_5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1003540138
    122 https://doi.org/10.1007/978-3-319-14148-0_5
    123 rdf:type schema:CreativeWork
    124 sg:pub.10.1007/978-3-319-14148-0_7 schema:sameAs https://app.dimensions.ai/details/publication/pub.1029851493
    125 https://doi.org/10.1007/978-3-319-14148-0_7
    126 rdf:type schema:CreativeWork
    127 sg:pub.10.1007/978-3-642-04271-3_123 schema:sameAs https://app.dimensions.ai/details/publication/pub.1032514581
    128 https://doi.org/10.1007/978-3-642-04271-3_123
    129 rdf:type schema:CreativeWork
    130 sg:pub.10.1007/978-3-642-15705-9_3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1027646597
    131 https://doi.org/10.1007/978-3-642-15705-9_3
    132 rdf:type schema:CreativeWork
    133 sg:pub.10.1007/978-3-642-33454-2_73 schema:sameAs https://app.dimensions.ai/details/publication/pub.1025627416
    134 https://doi.org/10.1007/978-3-642-33454-2_73
    135 rdf:type schema:CreativeWork
    136 sg:pub.10.1186/1475-925x-12-48 schema:sameAs https://app.dimensions.ai/details/publication/pub.1034702349
    137 https://doi.org/10.1186/1475-925x-12-48
    138 rdf:type schema:CreativeWork
    139 https://doi.org/10.1016/j.compmedimag.2009.02.006 schema:sameAs https://app.dimensions.ai/details/publication/pub.1042509523
    140 rdf:type schema:CreativeWork
    141 https://doi.org/10.1016/j.media.2009.02.004 schema:sameAs https://app.dimensions.ai/details/publication/pub.1039973389
    142 rdf:type schema:CreativeWork
    143 https://doi.org/10.1016/j.media.2011.01.006 schema:sameAs https://app.dimensions.ai/details/publication/pub.1044741038
    144 rdf:type schema:CreativeWork
    145 https://doi.org/10.1109/isbi.2006.1624935 schema:sameAs https://app.dimensions.ai/details/publication/pub.1094071881
    146 rdf:type schema:CreativeWork
    147 https://doi.org/10.1109/isbi.2014.6867892 schema:sameAs https://app.dimensions.ai/details/publication/pub.1094868876
    148 rdf:type schema:CreativeWork
    149 https://doi.org/10.1109/tbme.2012.2225833 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061529013
    150 rdf:type schema:CreativeWork
    151 https://doi.org/10.1109/tmi.2013.2268424 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061696131
    152 rdf:type schema:CreativeWork
    153 https://doi.org/10.1109/tmi.2013.2296976 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061696231
    154 rdf:type schema:CreativeWork
    155 https://www.grid.ac/institutes/grid.410305.3 schema:alternateName National Institutes of Health Clinical Center
    156 schema:name Imaging Biomarkers and Computer-Aided Detection Laboratory, Radiology and Imaging Sciences, National Institutes of Health Clinical Center, Bethesda, MD 20892, USA
    157 rdf:type schema:Organization
     




    Preview window. Press ESC to close (or click here)


    ...