3D Vertebra Segmentation by Feature Selection Active Shape Model View Full Text


Ontology type: schema:Chapter     


Chapter Info

DATE

2015

AUTHORS

Isaac Castro-Mateos , Jose M. Pozo , Aron Lazary , Alejandro Frangi

ABSTRACT

In this paper, a former method has been adapted to perform vertebra segmentations for the 2nd Workshop on Computational Methods and Clinical Applications for Spine Imaging (CSI 2014). A statistical Shape Models (SSM) of each lumbar vertebra was created for the segmentation step. From manually placed intervertebral discs centres, the similarity parameters are computed to initialise the vertebra shapes. The segmentation is performed by iteratively deforming a mesh inside the image intensity and then projecting it into the SSM space until convergence. Afterwards, a relaxation step based on B-spline is applied to overcome the SSM rigidity. The deformation of the mesh, within the image intensity, is performed by displacing each landmark along the normal direction of the surface mesh at the landmark position seeking a minimum of a cost function based on a set of trained features. The organisers tested the performance of our method with a dataset of five patients, achieving a global mean Dice Similarity Index (DSI) of 93.4 %. Results were consistent and accurate along the lumbar spine 93.8, 93.9, 93.7, 93.4 and 92.1 %, from L1 to L5. More... »

PAGES

241-245

References to SciGraph publications

  • 2001. Shape Constrained Deformable Models for 3D Medical Image Segmentation in INFORMATION PROCESSING IN MEDICAL IMAGING
  • Book

    TITLE

    Recent Advances in Computational Methods and Clinical Applications for Spine Imaging

    ISBN

    978-3-319-14147-3
    978-3-319-14148-0

    Author Affiliations

    Identifiers

    URI

    http://scigraph.springernature.com/pub.10.1007/978-3-319-14148-0_22

    DOI

    http://dx.doi.org/10.1007/978-3-319-14148-0_22

    DIMENSIONS

    https://app.dimensions.ai/details/publication/pub.1048752581


    Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
    Incoming Citations Browse incoming citations for this publication using opencitations.net

    JSON-LD is the canonical representation for SciGraph data.

    TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

    [
      {
        "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
        "about": [
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/1103", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Clinical Sciences", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/11", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Medical and Health Sciences", 
            "type": "DefinedTerm"
          }
        ], 
        "author": [
          {
            "affiliation": {
              "alternateName": "University of Sheffield", 
              "id": "https://www.grid.ac/institutes/grid.11835.3e", 
              "name": [
                "Centre for Computational Imaging and Simulation Technologies in Biomedicine (CISTIB), Department of Mechanical Engineering, University of Sheffield, Sheffield, UK"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Castro-Mateos", 
            "givenName": "Isaac", 
            "id": "sg:person.01121605414.82", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01121605414.82"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "University of Sheffield", 
              "id": "https://www.grid.ac/institutes/grid.11835.3e", 
              "name": [
                "Centre for Computational Imaging and Simulation Technologies in Biomedicine (CISTIB), Department of Mechanical Engineering, University of Sheffield, Sheffield, UK"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Pozo", 
            "givenName": "Jose M.", 
            "id": "sg:person.0664127315.76", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0664127315.76"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "name": [
                "National Center for Spine Disorder (NCSD), Budapest, Hungary"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Lazary", 
            "givenName": "Aron", 
            "id": "sg:person.01031041333.14", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01031041333.14"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "University of Sheffield", 
              "id": "https://www.grid.ac/institutes/grid.11835.3e", 
              "name": [
                "Centre for Computational Imaging and Simulation Technologies in Biomedicine (CISTIB), Department of Mechanical Engineering, University of Sheffield, Sheffield, UK"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Frangi", 
            "givenName": "Alejandro", 
            "id": "sg:person.01162717515.83", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01162717515.83"
            ], 
            "type": "Person"
          }
        ], 
        "citation": [
          {
            "id": "sg:pub.10.1007/3-540-45729-1_38", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1014016494", 
              "https://doi.org/10.1007/3-540-45729-1_38"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1006/cviu.1995.1004", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1021804206"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.media.2009.02.004", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1039973389"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1088/0031-9155/59/24/7847", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1059030607"
            ], 
            "type": "CreativeWork"
          }
        ], 
        "datePublished": "2015", 
        "datePublishedReg": "2015-01-01", 
        "description": "In this paper, a former method has been adapted to perform vertebra segmentations for the 2nd Workshop on Computational Methods and Clinical Applications for Spine Imaging (CSI 2014). A statistical Shape Models (SSM) of each lumbar vertebra was created for the segmentation step. From manually placed intervertebral discs centres, the similarity parameters are computed to initialise the vertebra shapes. The segmentation is performed by iteratively deforming a mesh inside the image intensity and then projecting it into the SSM space until convergence. Afterwards, a relaxation step based on B-spline is applied to overcome the SSM rigidity. The deformation of the mesh, within the image intensity, is performed by displacing each landmark along the normal direction of the surface mesh at the landmark position seeking a minimum of a cost function based on a set of trained features. The organisers tested the performance of our method with a dataset of five patients, achieving a global mean Dice Similarity Index (DSI) of 93.4\u00a0%. Results were consistent and accurate along the lumbar spine 93.8, 93.9, 93.7, 93.4 and 92.1\u00a0%, from L1 to L5.", 
        "editor": [
          {
            "familyName": "Yao", 
            "givenName": "Jianhua", 
            "type": "Person"
          }, 
          {
            "familyName": "Glocker", 
            "givenName": "Ben", 
            "type": "Person"
          }, 
          {
            "familyName": "Klinder", 
            "givenName": "Tobias", 
            "type": "Person"
          }, 
          {
            "familyName": "Li", 
            "givenName": "Shuo", 
            "type": "Person"
          }
        ], 
        "genre": "chapter", 
        "id": "sg:pub.10.1007/978-3-319-14148-0_22", 
        "inLanguage": [
          "en"
        ], 
        "isAccessibleForFree": false, 
        "isPartOf": {
          "isbn": [
            "978-3-319-14147-3", 
            "978-3-319-14148-0"
          ], 
          "name": "Recent Advances in Computational Methods and Clinical Applications for Spine Imaging", 
          "type": "Book"
        }, 
        "name": "3D Vertebra Segmentation by Feature Selection Active Shape Model", 
        "pagination": "241-245", 
        "productId": [
          {
            "name": "doi", 
            "type": "PropertyValue", 
            "value": [
              "10.1007/978-3-319-14148-0_22"
            ]
          }, 
          {
            "name": "readcube_id", 
            "type": "PropertyValue", 
            "value": [
              "e83f972266faa1a102c527220c0ed3033f87c049c9b7858341e54cf438838e79"
            ]
          }, 
          {
            "name": "dimensions_id", 
            "type": "PropertyValue", 
            "value": [
              "pub.1048752581"
            ]
          }
        ], 
        "publisher": {
          "location": "Cham", 
          "name": "Springer International Publishing", 
          "type": "Organisation"
        }, 
        "sameAs": [
          "https://doi.org/10.1007/978-3-319-14148-0_22", 
          "https://app.dimensions.ai/details/publication/pub.1048752581"
        ], 
        "sdDataset": "chapters", 
        "sdDatePublished": "2019-04-15T20:08", 
        "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
        "sdPublisher": {
          "name": "Springer Nature - SN SciGraph project", 
          "type": "Organization"
        }, 
        "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8687_00000273.jsonl", 
        "type": "Chapter", 
        "url": "http://link.springer.com/10.1007/978-3-319-14148-0_22"
      }
    ]
     

    Download the RDF metadata as:  json-ld nt turtle xml License info

    HOW TO GET THIS DATA PROGRAMMATICALLY:

    JSON-LD is a popular format for linked data which is fully compatible with JSON.

    curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/978-3-319-14148-0_22'

    N-Triples is a line-based linked data format ideal for batch operations.

    curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/978-3-319-14148-0_22'

    Turtle is a human-readable linked data format.

    curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/978-3-319-14148-0_22'

    RDF/XML is a standard XML format for linked data.

    curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/978-3-319-14148-0_22'


     

    This table displays all metadata directly associated to this object as RDF triples.

    116 TRIPLES      23 PREDICATES      31 URIs      20 LITERALS      8 BLANK NODES

    Subject Predicate Object
    1 sg:pub.10.1007/978-3-319-14148-0_22 schema:about anzsrc-for:11
    2 anzsrc-for:1103
    3 schema:author N6950439c63a54c12a7e699fba64b58c3
    4 schema:citation sg:pub.10.1007/3-540-45729-1_38
    5 https://doi.org/10.1006/cviu.1995.1004
    6 https://doi.org/10.1016/j.media.2009.02.004
    7 https://doi.org/10.1088/0031-9155/59/24/7847
    8 schema:datePublished 2015
    9 schema:datePublishedReg 2015-01-01
    10 schema:description In this paper, a former method has been adapted to perform vertebra segmentations for the 2nd Workshop on Computational Methods and Clinical Applications for Spine Imaging (CSI 2014). A statistical Shape Models (SSM) of each lumbar vertebra was created for the segmentation step. From manually placed intervertebral discs centres, the similarity parameters are computed to initialise the vertebra shapes. The segmentation is performed by iteratively deforming a mesh inside the image intensity and then projecting it into the SSM space until convergence. Afterwards, a relaxation step based on B-spline is applied to overcome the SSM rigidity. The deformation of the mesh, within the image intensity, is performed by displacing each landmark along the normal direction of the surface mesh at the landmark position seeking a minimum of a cost function based on a set of trained features. The organisers tested the performance of our method with a dataset of five patients, achieving a global mean Dice Similarity Index (DSI) of 93.4 %. Results were consistent and accurate along the lumbar spine 93.8, 93.9, 93.7, 93.4 and 92.1 %, from L1 to L5.
    11 schema:editor N433dc84ff2764b89a9fd0416be62ed7b
    12 schema:genre chapter
    13 schema:inLanguage en
    14 schema:isAccessibleForFree false
    15 schema:isPartOf N0d9b2f934e3a40fba110dad9696ff47b
    16 schema:name 3D Vertebra Segmentation by Feature Selection Active Shape Model
    17 schema:pagination 241-245
    18 schema:productId Nba7b1f32b0a94da5a52b0495e4fddc98
    19 Nc9d1e8de98e74b56be2408a98e9951de
    20 Ned7172eeaead4b2a840fd91b3d7ec78c
    21 schema:publisher Ndc1ef65c09d348b5a5434b63815110a9
    22 schema:sameAs https://app.dimensions.ai/details/publication/pub.1048752581
    23 https://doi.org/10.1007/978-3-319-14148-0_22
    24 schema:sdDatePublished 2019-04-15T20:08
    25 schema:sdLicense https://scigraph.springernature.com/explorer/license/
    26 schema:sdPublisher N1c618921951242f1ac56a617b2fd8e05
    27 schema:url http://link.springer.com/10.1007/978-3-319-14148-0_22
    28 sgo:license sg:explorer/license/
    29 sgo:sdDataset chapters
    30 rdf:type schema:Chapter
    31 N012b8341460f4e6e9f64a2c81112788c schema:name National Center for Spine Disorder (NCSD), Budapest, Hungary
    32 rdf:type schema:Organization
    33 N07482304985d4f2e8040bb0dc1520cb8 schema:familyName Li
    34 schema:givenName Shuo
    35 rdf:type schema:Person
    36 N0d9b2f934e3a40fba110dad9696ff47b schema:isbn 978-3-319-14147-3
    37 978-3-319-14148-0
    38 schema:name Recent Advances in Computational Methods and Clinical Applications for Spine Imaging
    39 rdf:type schema:Book
    40 N1c618921951242f1ac56a617b2fd8e05 schema:name Springer Nature - SN SciGraph project
    41 rdf:type schema:Organization
    42 N43008baccd09472386e09051be6fa6b5 schema:familyName Klinder
    43 schema:givenName Tobias
    44 rdf:type schema:Person
    45 N433dc84ff2764b89a9fd0416be62ed7b rdf:first N5a0db25fb70d41418c42010b38f9f1d3
    46 rdf:rest N6011fd6ca32143899776a9129f13126d
    47 N5849bad8aee74884a42f6e4fd803d2d3 rdf:first sg:person.01162717515.83
    48 rdf:rest rdf:nil
    49 N5a0db25fb70d41418c42010b38f9f1d3 schema:familyName Yao
    50 schema:givenName Jianhua
    51 rdf:type schema:Person
    52 N6011fd6ca32143899776a9129f13126d rdf:first N87d8be0321ef4a77b2cd9d597587bd30
    53 rdf:rest Ne99140279bc44b309480e8bc0cf62dca
    54 N6950439c63a54c12a7e699fba64b58c3 rdf:first sg:person.01121605414.82
    55 rdf:rest Ne6a41634eba349908568a4c7f4d7e347
    56 N87d8be0321ef4a77b2cd9d597587bd30 schema:familyName Glocker
    57 schema:givenName Ben
    58 rdf:type schema:Person
    59 Nba7b1f32b0a94da5a52b0495e4fddc98 schema:name doi
    60 schema:value 10.1007/978-3-319-14148-0_22
    61 rdf:type schema:PropertyValue
    62 Nc9d1e8de98e74b56be2408a98e9951de schema:name dimensions_id
    63 schema:value pub.1048752581
    64 rdf:type schema:PropertyValue
    65 Ncf7776c10e974f158bc56de6f212365c rdf:first sg:person.01031041333.14
    66 rdf:rest N5849bad8aee74884a42f6e4fd803d2d3
    67 Ndc1ef65c09d348b5a5434b63815110a9 schema:location Cham
    68 schema:name Springer International Publishing
    69 rdf:type schema:Organisation
    70 Ne6a41634eba349908568a4c7f4d7e347 rdf:first sg:person.0664127315.76
    71 rdf:rest Ncf7776c10e974f158bc56de6f212365c
    72 Ne6cc79d89f894bf0a4447bcaec92e4e7 rdf:first N07482304985d4f2e8040bb0dc1520cb8
    73 rdf:rest rdf:nil
    74 Ne99140279bc44b309480e8bc0cf62dca rdf:first N43008baccd09472386e09051be6fa6b5
    75 rdf:rest Ne6cc79d89f894bf0a4447bcaec92e4e7
    76 Ned7172eeaead4b2a840fd91b3d7ec78c schema:name readcube_id
    77 schema:value e83f972266faa1a102c527220c0ed3033f87c049c9b7858341e54cf438838e79
    78 rdf:type schema:PropertyValue
    79 anzsrc-for:11 schema:inDefinedTermSet anzsrc-for:
    80 schema:name Medical and Health Sciences
    81 rdf:type schema:DefinedTerm
    82 anzsrc-for:1103 schema:inDefinedTermSet anzsrc-for:
    83 schema:name Clinical Sciences
    84 rdf:type schema:DefinedTerm
    85 sg:person.01031041333.14 schema:affiliation N012b8341460f4e6e9f64a2c81112788c
    86 schema:familyName Lazary
    87 schema:givenName Aron
    88 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01031041333.14
    89 rdf:type schema:Person
    90 sg:person.01121605414.82 schema:affiliation https://www.grid.ac/institutes/grid.11835.3e
    91 schema:familyName Castro-Mateos
    92 schema:givenName Isaac
    93 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01121605414.82
    94 rdf:type schema:Person
    95 sg:person.01162717515.83 schema:affiliation https://www.grid.ac/institutes/grid.11835.3e
    96 schema:familyName Frangi
    97 schema:givenName Alejandro
    98 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01162717515.83
    99 rdf:type schema:Person
    100 sg:person.0664127315.76 schema:affiliation https://www.grid.ac/institutes/grid.11835.3e
    101 schema:familyName Pozo
    102 schema:givenName Jose M.
    103 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0664127315.76
    104 rdf:type schema:Person
    105 sg:pub.10.1007/3-540-45729-1_38 schema:sameAs https://app.dimensions.ai/details/publication/pub.1014016494
    106 https://doi.org/10.1007/3-540-45729-1_38
    107 rdf:type schema:CreativeWork
    108 https://doi.org/10.1006/cviu.1995.1004 schema:sameAs https://app.dimensions.ai/details/publication/pub.1021804206
    109 rdf:type schema:CreativeWork
    110 https://doi.org/10.1016/j.media.2009.02.004 schema:sameAs https://app.dimensions.ai/details/publication/pub.1039973389
    111 rdf:type schema:CreativeWork
    112 https://doi.org/10.1088/0031-9155/59/24/7847 schema:sameAs https://app.dimensions.ai/details/publication/pub.1059030607
    113 rdf:type schema:CreativeWork
    114 https://www.grid.ac/institutes/grid.11835.3e schema:alternateName University of Sheffield
    115 schema:name Centre for Computational Imaging and Simulation Technologies in Biomedicine (CISTIB), Department of Mechanical Engineering, University of Sheffield, Sheffield, UK
    116 rdf:type schema:Organization
     




    Preview window. Press ESC to close (or click here)


    ...