Graphene Filled Polymers for Vapor/Gas Sensor Applications View Full Text


Ontology type: schema:Chapter     


Chapter Info

DATE

2015

AUTHORS

Tran Thanh Tung , Mickael Castro , Jean Francois Feller , Tae Young Kim

ABSTRACT

With their unique and excellent properties such as high carrier mobility and high surface area, graphene-base materials have shown great promise as efficient sensing materials for highly sensitive and low noise sensors. Graphene offers some important advantages over other carbon-based materials such as carbon nanotubes (CNTs), which includes enhanced sensitivity and low inherent electrical noise. These merits mainly comes from their structural features, as it is composed of all surface carbon atoms with large and flat geometry enabling high sensitivity and low contact resistance. Moreover, their surface can be functionalized with organic molecules (e.g., polymers, nanocrystalline , bio-molecular), and surface molecules on graphene surface can also be used as gas/vapor sensing materials that promote the sensing capability of overall composites. This has sparked interests in the development of highly sensitive and selective gas/vapor sensors based on graphene-based materials and their polymer composites. In this review, recent progress on graphene and its composites will be discussed in the context of their use in sensors. It mainly focuses on how engineering graphene with other functional molecules can affect their ability to detect a number of different gas/vapor. It also emphasizes achievements made with graphene-filled polymer composites for gas/vapor sensor applications. More... »

PAGES

253-275

Book

TITLE

Graphene-Based Polymer Nanocomposites in Electronics

ISBN

978-3-319-13874-9
978-3-319-13875-6

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/978-3-319-13875-6_10

DOI

http://dx.doi.org/10.1007/978-3-319-13875-6_10

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1011574096


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0912", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Materials Engineering", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/09", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Engineering", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "University of Strasbourg", 
          "id": "https://www.grid.ac/institutes/grid.11843.3f", 
          "name": [
            "Carbon Nanostructure and Catalyst Group, Institute of Chemistry and Processes for Energy, Environment and Health (ICPEES), CNRS-Strasbourg University, Strasbourg, France"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Tung", 
        "givenName": "Tran Thanh", 
        "id": "sg:person.0670224002.24", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0670224002.24"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "name": [
            "Smart Plastic Groups, LIMATB, University of South Brittany,  Lorient, Bretagne, France"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Castro", 
        "givenName": "Mickael", 
        "id": "sg:person.0776512327.32", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0776512327.32"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "name": [
            "Smart Plastic Groups, LIMATB, University of South Brittany,  Lorient, Bretagne, France"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Feller", 
        "givenName": "Jean Francois", 
        "id": "sg:person.01215307616.79", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01215307616.79"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Gachon University", 
          "id": "https://www.grid.ac/institutes/grid.256155.0", 
          "name": [
            "Department of Bionanotechnology, Gachon University, 1342 Seongnamdaero, Sujeong-Gu, Seongnam-Si, Gyeonggi-Do, 461-701\u00a0Seongnam, South Korea"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Kim", 
        "givenName": "Tae Young", 
        "id": "sg:person.01014205231.34", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01014205231.34"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1039/c4fd00086b", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1037761535"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2015", 
    "datePublishedReg": "2015-01-01", 
    "description": "With their unique and excellent properties such as high carrier mobility and high surface area, graphene-base materials have shown great promise as efficient sensing materials for highly sensitive and low noise sensors. Graphene offers some important advantages over other carbon-based materials such as carbon nanotubes (CNTs), which includes enhanced sensitivity and low inherent electrical noise. These merits mainly comes from their structural features, as it is composed of all surface carbon atoms with large and flat geometry enabling high sensitivity and low contact resistance. Moreover, their surface can be functionalized with organic molecules (e.g., polymers, nanocrystalline , bio-molecular), and surface molecules on graphene surface can also be used as gas/vapor sensing materials that promote the sensing capability of overall composites. This has sparked interests in the development of highly sensitive and selective gas/vapor sensors based on graphene-based materials and their polymer composites. In this review, recent progress on graphene and its composites will be discussed in the context of their use in sensors. It mainly focuses on how engineering graphene with other functional molecules can affect their ability to detect a number of different gas/vapor. It also emphasizes achievements made with graphene-filled polymer composites for gas/vapor sensor applications.", 
    "editor": [
      {
        "familyName": "Sadasivuni", 
        "givenName": "Kishor Kumar", 
        "type": "Person"
      }, 
      {
        "familyName": "Ponnamma", 
        "givenName": "Deepalekshmi", 
        "type": "Person"
      }, 
      {
        "familyName": "Kim", 
        "givenName": "Jaehwan", 
        "type": "Person"
      }, 
      {
        "familyName": "Thomas", 
        "givenName": "Sabu", 
        "type": "Person"
      }
    ], 
    "genre": "chapter", 
    "id": "sg:pub.10.1007/978-3-319-13875-6_10", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": {
      "isbn": [
        "978-3-319-13874-9", 
        "978-3-319-13875-6"
      ], 
      "name": "Graphene-Based Polymer Nanocomposites in Electronics", 
      "type": "Book"
    }, 
    "name": "Graphene Filled Polymers for Vapor/Gas Sensor Applications", 
    "pagination": "253-275", 
    "productId": [
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/978-3-319-13875-6_10"
        ]
      }, 
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "3724ffcc9ecb2b5dabf6670d77f22f0c4a57c848aff2016611fd56fd5c219cda"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1011574096"
        ]
      }
    ], 
    "publisher": {
      "location": "Cham", 
      "name": "Springer International Publishing", 
      "type": "Organisation"
    }, 
    "sameAs": [
      "https://doi.org/10.1007/978-3-319-13875-6_10", 
      "https://app.dimensions.ai/details/publication/pub.1011574096"
    ], 
    "sdDataset": "chapters", 
    "sdDatePublished": "2019-04-16T00:47", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8700_00000250.jsonl", 
    "type": "Chapter", 
    "url": "http://link.springer.com/10.1007/978-3-319-13875-6_10"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/978-3-319-13875-6_10'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/978-3-319-13875-6_10'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/978-3-319-13875-6_10'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/978-3-319-13875-6_10'


 

This table displays all metadata directly associated to this object as RDF triples.

111 TRIPLES      23 PREDICATES      28 URIs      20 LITERALS      8 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/978-3-319-13875-6_10 schema:about anzsrc-for:09
2 anzsrc-for:0912
3 schema:author N9bc26efc71cb483f86ec67cd8b8b2724
4 schema:citation https://doi.org/10.1039/c4fd00086b
5 schema:datePublished 2015
6 schema:datePublishedReg 2015-01-01
7 schema:description With their unique and excellent properties such as high carrier mobility and high surface area, graphene-base materials have shown great promise as efficient sensing materials for highly sensitive and low noise sensors. Graphene offers some important advantages over other carbon-based materials such as carbon nanotubes (CNTs), which includes enhanced sensitivity and low inherent electrical noise. These merits mainly comes from their structural features, as it is composed of all surface carbon atoms with large and flat geometry enabling high sensitivity and low contact resistance. Moreover, their surface can be functionalized with organic molecules (e.g., polymers, nanocrystalline , bio-molecular), and surface molecules on graphene surface can also be used as gas/vapor sensing materials that promote the sensing capability of overall composites. This has sparked interests in the development of highly sensitive and selective gas/vapor sensors based on graphene-based materials and their polymer composites. In this review, recent progress on graphene and its composites will be discussed in the context of their use in sensors. It mainly focuses on how engineering graphene with other functional molecules can affect their ability to detect a number of different gas/vapor. It also emphasizes achievements made with graphene-filled polymer composites for gas/vapor sensor applications.
8 schema:editor N82f4e61745724f0da24b499747d4fb0d
9 schema:genre chapter
10 schema:inLanguage en
11 schema:isAccessibleForFree false
12 schema:isPartOf Nc1272a299b3d49428eeb146d6bf80c26
13 schema:name Graphene Filled Polymers for Vapor/Gas Sensor Applications
14 schema:pagination 253-275
15 schema:productId N2f4388298d2a4abf828497b450708a05
16 N72218dc8ad864fdeb752eeb7b7e0d6ce
17 Na4ccda8efc7c494e910bcb360e64371f
18 schema:publisher Na2ddc9ef33b44d96b508bfba6cbadb31
19 schema:sameAs https://app.dimensions.ai/details/publication/pub.1011574096
20 https://doi.org/10.1007/978-3-319-13875-6_10
21 schema:sdDatePublished 2019-04-16T00:47
22 schema:sdLicense https://scigraph.springernature.com/explorer/license/
23 schema:sdPublisher N5c61a8ed494b44c6b7bba239559c9583
24 schema:url http://link.springer.com/10.1007/978-3-319-13875-6_10
25 sgo:license sg:explorer/license/
26 sgo:sdDataset chapters
27 rdf:type schema:Chapter
28 N12ad2b01155641cfa922ae0faeb60596 schema:name Smart Plastic Groups, LIMATB, University of South Brittany, Lorient, Bretagne, France
29 rdf:type schema:Organization
30 N14020e39e1a34c6e9a251aef8b5983d0 schema:familyName Ponnamma
31 schema:givenName Deepalekshmi
32 rdf:type schema:Person
33 N2f4388298d2a4abf828497b450708a05 schema:name dimensions_id
34 schema:value pub.1011574096
35 rdf:type schema:PropertyValue
36 N5c61a8ed494b44c6b7bba239559c9583 schema:name Springer Nature - SN SciGraph project
37 rdf:type schema:Organization
38 N604f0bd308da4d99bd8a8fbe7ad45696 rdf:first sg:person.01215307616.79
39 rdf:rest N7e8f8e7bd4594a32bd8b8cb25611f1c0
40 N72218dc8ad864fdeb752eeb7b7e0d6ce schema:name readcube_id
41 schema:value 3724ffcc9ecb2b5dabf6670d77f22f0c4a57c848aff2016611fd56fd5c219cda
42 rdf:type schema:PropertyValue
43 N784e3ef715e54c86a6dd1be6a8dfdcf1 schema:familyName Kim
44 schema:givenName Jaehwan
45 rdf:type schema:Person
46 N7e8f8e7bd4594a32bd8b8cb25611f1c0 rdf:first sg:person.01014205231.34
47 rdf:rest rdf:nil
48 N82f4e61745724f0da24b499747d4fb0d rdf:first N9d043020939f40a3855e010dfb72d43f
49 rdf:rest Nafc1ddad469d46a2b6d903fed73be76a
50 N900c0248ae7c401091edb859628c2e1e schema:name Smart Plastic Groups, LIMATB, University of South Brittany, Lorient, Bretagne, France
51 rdf:type schema:Organization
52 N9bc26efc71cb483f86ec67cd8b8b2724 rdf:first sg:person.0670224002.24
53 rdf:rest Na3ee56f45034443cadd463b97c60112d
54 N9d043020939f40a3855e010dfb72d43f schema:familyName Sadasivuni
55 schema:givenName Kishor Kumar
56 rdf:type schema:Person
57 Na11a4989a3b04011b6762d6c91a02689 rdf:first N784e3ef715e54c86a6dd1be6a8dfdcf1
58 rdf:rest Nd1219ba335af419db16844d91463efc7
59 Na2ddc9ef33b44d96b508bfba6cbadb31 schema:location Cham
60 schema:name Springer International Publishing
61 rdf:type schema:Organisation
62 Na3ee56f45034443cadd463b97c60112d rdf:first sg:person.0776512327.32
63 rdf:rest N604f0bd308da4d99bd8a8fbe7ad45696
64 Na4ccda8efc7c494e910bcb360e64371f schema:name doi
65 schema:value 10.1007/978-3-319-13875-6_10
66 rdf:type schema:PropertyValue
67 Nafc1ddad469d46a2b6d903fed73be76a rdf:first N14020e39e1a34c6e9a251aef8b5983d0
68 rdf:rest Na11a4989a3b04011b6762d6c91a02689
69 Nc1272a299b3d49428eeb146d6bf80c26 schema:isbn 978-3-319-13874-9
70 978-3-319-13875-6
71 schema:name Graphene-Based Polymer Nanocomposites in Electronics
72 rdf:type schema:Book
73 Nd1219ba335af419db16844d91463efc7 rdf:first Nfbb34e0f16f741ca9ae2edadae7eebc1
74 rdf:rest rdf:nil
75 Nfbb34e0f16f741ca9ae2edadae7eebc1 schema:familyName Thomas
76 schema:givenName Sabu
77 rdf:type schema:Person
78 anzsrc-for:09 schema:inDefinedTermSet anzsrc-for:
79 schema:name Engineering
80 rdf:type schema:DefinedTerm
81 anzsrc-for:0912 schema:inDefinedTermSet anzsrc-for:
82 schema:name Materials Engineering
83 rdf:type schema:DefinedTerm
84 sg:person.01014205231.34 schema:affiliation https://www.grid.ac/institutes/grid.256155.0
85 schema:familyName Kim
86 schema:givenName Tae Young
87 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01014205231.34
88 rdf:type schema:Person
89 sg:person.01215307616.79 schema:affiliation N900c0248ae7c401091edb859628c2e1e
90 schema:familyName Feller
91 schema:givenName Jean Francois
92 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01215307616.79
93 rdf:type schema:Person
94 sg:person.0670224002.24 schema:affiliation https://www.grid.ac/institutes/grid.11843.3f
95 schema:familyName Tung
96 schema:givenName Tran Thanh
97 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0670224002.24
98 rdf:type schema:Person
99 sg:person.0776512327.32 schema:affiliation N12ad2b01155641cfa922ae0faeb60596
100 schema:familyName Castro
101 schema:givenName Mickael
102 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0776512327.32
103 rdf:type schema:Person
104 https://doi.org/10.1039/c4fd00086b schema:sameAs https://app.dimensions.ai/details/publication/pub.1037761535
105 rdf:type schema:CreativeWork
106 https://www.grid.ac/institutes/grid.11843.3f schema:alternateName University of Strasbourg
107 schema:name Carbon Nanostructure and Catalyst Group, Institute of Chemistry and Processes for Energy, Environment and Health (ICPEES), CNRS-Strasbourg University, Strasbourg, France
108 rdf:type schema:Organization
109 https://www.grid.ac/institutes/grid.256155.0 schema:alternateName Gachon University
110 schema:name Department of Bionanotechnology, Gachon University, 1342 Seongnamdaero, Sujeong-Gu, Seongnam-Si, Gyeonggi-Do, 461-701 Seongnam, South Korea
111 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...