Authentication Schemes - Comparison and Effective Password Spaces View Full Text


Ontology type: schema:Chapter      Open Access: True


Chapter Info

DATE

2014

AUTHORS

Peter Mayer , Melanie Volkamer , Michaela Kauer

ABSTRACT

Text passwords are ubiquitous in authentication. Despite this ubiquity, they have been the target of much criticism. One alternative to the pure recall text passwords are graphical authentication schemes. The different proposed schemes harness the vast visual memory of the human brain and exploit cued-recall as well as recognition in addition to pure recall. While graphical authentication in general is promising, basic research is required to better understand which schemes are most appropriate for which scenario (incl. security model and frequency of usage). This paper presents a comparative study in which all schemes are configured to the same effective password space (as used by large Internet companies). The experiment includes both, cued-recall-based and recognition-based schemes. The results demonstrate that recognition-based schemes have the upper hand in terms of effectiveness and cued-recall-based schemes in terms of efficiency. Thus, depending on the scenario one or the other approach is more appropriate. Both types of schemes have lower reset rates than text passwords which might be of interest in scenarios with limited support capacities. More... »

PAGES

204-225

Book

TITLE

Information Systems Security

ISBN

978-3-319-13840-4
978-3-319-13841-1

Author Affiliations

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/978-3-319-13841-1_12

DOI

http://dx.doi.org/10.1007/978-3-319-13841-1_12

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1030439689


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/1701", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Psychology", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/17", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Psychology and Cognitive Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Technical University of Darmstadt", 
          "id": "https://www.grid.ac/institutes/grid.6546.1", 
          "name": [
            "Center for Advanced Security Research Darmstadt, Technische Universit\u00e4t Darmstadt, Germany"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Mayer", 
        "givenName": "Peter", 
        "id": "sg:person.015773274471.07", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015773274471.07"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Technical University of Darmstadt", 
          "id": "https://www.grid.ac/institutes/grid.6546.1", 
          "name": [
            "Center for Advanced Security Research Darmstadt, Technische Universit\u00e4t Darmstadt, Germany"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Volkamer", 
        "givenName": "Melanie", 
        "id": "sg:person.07572567217.40", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07572567217.40"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Technical University of Darmstadt", 
          "id": "https://www.grid.ac/institutes/grid.6546.1", 
          "name": [
            "Institute of Ergonomics, Technische Universit\u00e4t Darmstadt, Germany"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Kauer", 
        "givenName": "Michaela", 
        "id": "sg:person.07734434743.81", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07734434743.81"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1145/1978942.1979321", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1004695319"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1145/1280680.1280710", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1006365893"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1145/985921.986074", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1013317929"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1145/1866307.1866327", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1015343583"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1145/2501604.2501617", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1018049436"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1111/j.2044-8295.1975.tb01477.x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1020498400"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1145/1837110.1837124", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1021649784"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1145/1073001.1073002", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1023364382"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1145/2501604.2501619", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1029803331"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1145/1242572.1242661", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1032389933"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1145/2076732.2076754", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1032662610"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1145/975817.975820", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1034542142"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1145/2501604.2501615", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1035103047"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1145/1653662.1653722", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1035679227"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1145/1920261.1920273", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1039703032"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.ijhcs.2005.04.010", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1041315955"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1145/1837110.1837113", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1045439649"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1037/0003-066x.63.7.591", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1048641673"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1145/2333112.2333114", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1053394019"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/tdsc.2011.55", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061585319"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.18637/jss.v050.i12", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1068672754"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/csac.2005.27", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1093456615"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/sp.2012.49", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1093624580"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2014", 
    "datePublishedReg": "2014-01-01", 
    "description": "Text passwords are ubiquitous in authentication. Despite this ubiquity, they have been the target of much criticism. One alternative to the pure recall text passwords are graphical authentication schemes. The different proposed schemes harness the vast visual memory of the human brain and exploit cued-recall as well as recognition in addition to pure recall. While graphical authentication in general is promising, basic research is required to better understand which schemes are most appropriate for which scenario (incl. security model and frequency of usage). This paper presents a comparative study in which all schemes are configured to the same effective password space (as used by large Internet companies). The experiment includes both, cued-recall-based and recognition-based schemes. The results demonstrate that recognition-based schemes have the upper hand in terms of effectiveness and cued-recall-based schemes in terms of efficiency. Thus, depending on the scenario one or the other approach is more appropriate. Both types of schemes have lower reset rates than text passwords which might be of interest in scenarios with limited support capacities.", 
    "editor": [
      {
        "familyName": "Prakash", 
        "givenName": "Atul", 
        "type": "Person"
      }, 
      {
        "familyName": "Shyamasundar", 
        "givenName": "Rudrapatna", 
        "type": "Person"
      }
    ], 
    "genre": "chapter", 
    "id": "sg:pub.10.1007/978-3-319-13841-1_12", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": true, 
    "isPartOf": {
      "isbn": [
        "978-3-319-13840-4", 
        "978-3-319-13841-1"
      ], 
      "name": "Information Systems Security", 
      "type": "Book"
    }, 
    "name": "Authentication Schemes - Comparison and Effective Password Spaces", 
    "pagination": "204-225", 
    "productId": [
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/978-3-319-13841-1_12"
        ]
      }, 
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "9103389a454e591b09100ff0de9ec4838e84cfc5ab2fbd7953d330d1a8b40458"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1030439689"
        ]
      }
    ], 
    "publisher": {
      "location": "Cham", 
      "name": "Springer International Publishing", 
      "type": "Organisation"
    }, 
    "sameAs": [
      "https://doi.org/10.1007/978-3-319-13841-1_12", 
      "https://app.dimensions.ai/details/publication/pub.1030439689"
    ], 
    "sdDataset": "chapters", 
    "sdDatePublished": "2019-04-15T16:17", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8675_00000262.jsonl", 
    "type": "Chapter", 
    "url": "http://link.springer.com/10.1007/978-3-319-13841-1_12"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/978-3-319-13841-1_12'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/978-3-319-13841-1_12'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/978-3-319-13841-1_12'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/978-3-319-13841-1_12'


 

This table displays all metadata directly associated to this object as RDF triples.

154 TRIPLES      23 PREDICATES      50 URIs      20 LITERALS      8 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/978-3-319-13841-1_12 schema:about anzsrc-for:17
2 anzsrc-for:1701
3 schema:author N85ea6a9e1c794ee0b4c547d7ba2c432d
4 schema:citation https://doi.org/10.1016/j.ijhcs.2005.04.010
5 https://doi.org/10.1037/0003-066x.63.7.591
6 https://doi.org/10.1109/csac.2005.27
7 https://doi.org/10.1109/sp.2012.49
8 https://doi.org/10.1109/tdsc.2011.55
9 https://doi.org/10.1111/j.2044-8295.1975.tb01477.x
10 https://doi.org/10.1145/1073001.1073002
11 https://doi.org/10.1145/1242572.1242661
12 https://doi.org/10.1145/1280680.1280710
13 https://doi.org/10.1145/1653662.1653722
14 https://doi.org/10.1145/1837110.1837113
15 https://doi.org/10.1145/1837110.1837124
16 https://doi.org/10.1145/1866307.1866327
17 https://doi.org/10.1145/1920261.1920273
18 https://doi.org/10.1145/1978942.1979321
19 https://doi.org/10.1145/2076732.2076754
20 https://doi.org/10.1145/2333112.2333114
21 https://doi.org/10.1145/2501604.2501615
22 https://doi.org/10.1145/2501604.2501617
23 https://doi.org/10.1145/2501604.2501619
24 https://doi.org/10.1145/975817.975820
25 https://doi.org/10.1145/985921.986074
26 https://doi.org/10.18637/jss.v050.i12
27 schema:datePublished 2014
28 schema:datePublishedReg 2014-01-01
29 schema:description Text passwords are ubiquitous in authentication. Despite this ubiquity, they have been the target of much criticism. One alternative to the pure recall text passwords are graphical authentication schemes. The different proposed schemes harness the vast visual memory of the human brain and exploit cued-recall as well as recognition in addition to pure recall. While graphical authentication in general is promising, basic research is required to better understand which schemes are most appropriate for which scenario (incl. security model and frequency of usage). This paper presents a comparative study in which all schemes are configured to the same effective password space (as used by large Internet companies). The experiment includes both, cued-recall-based and recognition-based schemes. The results demonstrate that recognition-based schemes have the upper hand in terms of effectiveness and cued-recall-based schemes in terms of efficiency. Thus, depending on the scenario one or the other approach is more appropriate. Both types of schemes have lower reset rates than text passwords which might be of interest in scenarios with limited support capacities.
30 schema:editor N45d60fa20b324588af3d367872b30543
31 schema:genre chapter
32 schema:inLanguage en
33 schema:isAccessibleForFree true
34 schema:isPartOf N3692d66e1bba40aa8b7b1e29effae33f
35 schema:name Authentication Schemes - Comparison and Effective Password Spaces
36 schema:pagination 204-225
37 schema:productId N1e37a17e3c334814b488441cffae2e47
38 N5490c1975a784a37b4b345bb99b42e26
39 Nd959b1ffd06d4a14a2e61bc13ce4b166
40 schema:publisher N989349db1ccb444daad38866eeae6032
41 schema:sameAs https://app.dimensions.ai/details/publication/pub.1030439689
42 https://doi.org/10.1007/978-3-319-13841-1_12
43 schema:sdDatePublished 2019-04-15T16:17
44 schema:sdLicense https://scigraph.springernature.com/explorer/license/
45 schema:sdPublisher N6e7170eadd3c4d9591cace60701ce901
46 schema:url http://link.springer.com/10.1007/978-3-319-13841-1_12
47 sgo:license sg:explorer/license/
48 sgo:sdDataset chapters
49 rdf:type schema:Chapter
50 N07e73518568749b7bb832e107271c415 rdf:first N8ad8d76e58f04620b6b297b8b84ea033
51 rdf:rest rdf:nil
52 N1e37a17e3c334814b488441cffae2e47 schema:name dimensions_id
53 schema:value pub.1030439689
54 rdf:type schema:PropertyValue
55 N3692d66e1bba40aa8b7b1e29effae33f schema:isbn 978-3-319-13840-4
56 978-3-319-13841-1
57 schema:name Information Systems Security
58 rdf:type schema:Book
59 N45d60fa20b324588af3d367872b30543 rdf:first Nbe2116036bc441de99fd6b619569255e
60 rdf:rest N07e73518568749b7bb832e107271c415
61 N5490c1975a784a37b4b345bb99b42e26 schema:name readcube_id
62 schema:value 9103389a454e591b09100ff0de9ec4838e84cfc5ab2fbd7953d330d1a8b40458
63 rdf:type schema:PropertyValue
64 N6e7170eadd3c4d9591cace60701ce901 schema:name Springer Nature - SN SciGraph project
65 rdf:type schema:Organization
66 N711b94ecc24a49c6ade9ef4a4687a255 rdf:first sg:person.07734434743.81
67 rdf:rest rdf:nil
68 N85ea6a9e1c794ee0b4c547d7ba2c432d rdf:first sg:person.015773274471.07
69 rdf:rest N8d76ea583db54ddfaa6ab6644365d429
70 N8ad8d76e58f04620b6b297b8b84ea033 schema:familyName Shyamasundar
71 schema:givenName Rudrapatna
72 rdf:type schema:Person
73 N8d76ea583db54ddfaa6ab6644365d429 rdf:first sg:person.07572567217.40
74 rdf:rest N711b94ecc24a49c6ade9ef4a4687a255
75 N989349db1ccb444daad38866eeae6032 schema:location Cham
76 schema:name Springer International Publishing
77 rdf:type schema:Organisation
78 Nbe2116036bc441de99fd6b619569255e schema:familyName Prakash
79 schema:givenName Atul
80 rdf:type schema:Person
81 Nd959b1ffd06d4a14a2e61bc13ce4b166 schema:name doi
82 schema:value 10.1007/978-3-319-13841-1_12
83 rdf:type schema:PropertyValue
84 anzsrc-for:17 schema:inDefinedTermSet anzsrc-for:
85 schema:name Psychology and Cognitive Sciences
86 rdf:type schema:DefinedTerm
87 anzsrc-for:1701 schema:inDefinedTermSet anzsrc-for:
88 schema:name Psychology
89 rdf:type schema:DefinedTerm
90 sg:person.015773274471.07 schema:affiliation https://www.grid.ac/institutes/grid.6546.1
91 schema:familyName Mayer
92 schema:givenName Peter
93 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015773274471.07
94 rdf:type schema:Person
95 sg:person.07572567217.40 schema:affiliation https://www.grid.ac/institutes/grid.6546.1
96 schema:familyName Volkamer
97 schema:givenName Melanie
98 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07572567217.40
99 rdf:type schema:Person
100 sg:person.07734434743.81 schema:affiliation https://www.grid.ac/institutes/grid.6546.1
101 schema:familyName Kauer
102 schema:givenName Michaela
103 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07734434743.81
104 rdf:type schema:Person
105 https://doi.org/10.1016/j.ijhcs.2005.04.010 schema:sameAs https://app.dimensions.ai/details/publication/pub.1041315955
106 rdf:type schema:CreativeWork
107 https://doi.org/10.1037/0003-066x.63.7.591 schema:sameAs https://app.dimensions.ai/details/publication/pub.1048641673
108 rdf:type schema:CreativeWork
109 https://doi.org/10.1109/csac.2005.27 schema:sameAs https://app.dimensions.ai/details/publication/pub.1093456615
110 rdf:type schema:CreativeWork
111 https://doi.org/10.1109/sp.2012.49 schema:sameAs https://app.dimensions.ai/details/publication/pub.1093624580
112 rdf:type schema:CreativeWork
113 https://doi.org/10.1109/tdsc.2011.55 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061585319
114 rdf:type schema:CreativeWork
115 https://doi.org/10.1111/j.2044-8295.1975.tb01477.x schema:sameAs https://app.dimensions.ai/details/publication/pub.1020498400
116 rdf:type schema:CreativeWork
117 https://doi.org/10.1145/1073001.1073002 schema:sameAs https://app.dimensions.ai/details/publication/pub.1023364382
118 rdf:type schema:CreativeWork
119 https://doi.org/10.1145/1242572.1242661 schema:sameAs https://app.dimensions.ai/details/publication/pub.1032389933
120 rdf:type schema:CreativeWork
121 https://doi.org/10.1145/1280680.1280710 schema:sameAs https://app.dimensions.ai/details/publication/pub.1006365893
122 rdf:type schema:CreativeWork
123 https://doi.org/10.1145/1653662.1653722 schema:sameAs https://app.dimensions.ai/details/publication/pub.1035679227
124 rdf:type schema:CreativeWork
125 https://doi.org/10.1145/1837110.1837113 schema:sameAs https://app.dimensions.ai/details/publication/pub.1045439649
126 rdf:type schema:CreativeWork
127 https://doi.org/10.1145/1837110.1837124 schema:sameAs https://app.dimensions.ai/details/publication/pub.1021649784
128 rdf:type schema:CreativeWork
129 https://doi.org/10.1145/1866307.1866327 schema:sameAs https://app.dimensions.ai/details/publication/pub.1015343583
130 rdf:type schema:CreativeWork
131 https://doi.org/10.1145/1920261.1920273 schema:sameAs https://app.dimensions.ai/details/publication/pub.1039703032
132 rdf:type schema:CreativeWork
133 https://doi.org/10.1145/1978942.1979321 schema:sameAs https://app.dimensions.ai/details/publication/pub.1004695319
134 rdf:type schema:CreativeWork
135 https://doi.org/10.1145/2076732.2076754 schema:sameAs https://app.dimensions.ai/details/publication/pub.1032662610
136 rdf:type schema:CreativeWork
137 https://doi.org/10.1145/2333112.2333114 schema:sameAs https://app.dimensions.ai/details/publication/pub.1053394019
138 rdf:type schema:CreativeWork
139 https://doi.org/10.1145/2501604.2501615 schema:sameAs https://app.dimensions.ai/details/publication/pub.1035103047
140 rdf:type schema:CreativeWork
141 https://doi.org/10.1145/2501604.2501617 schema:sameAs https://app.dimensions.ai/details/publication/pub.1018049436
142 rdf:type schema:CreativeWork
143 https://doi.org/10.1145/2501604.2501619 schema:sameAs https://app.dimensions.ai/details/publication/pub.1029803331
144 rdf:type schema:CreativeWork
145 https://doi.org/10.1145/975817.975820 schema:sameAs https://app.dimensions.ai/details/publication/pub.1034542142
146 rdf:type schema:CreativeWork
147 https://doi.org/10.1145/985921.986074 schema:sameAs https://app.dimensions.ai/details/publication/pub.1013317929
148 rdf:type schema:CreativeWork
149 https://doi.org/10.18637/jss.v050.i12 schema:sameAs https://app.dimensions.ai/details/publication/pub.1068672754
150 rdf:type schema:CreativeWork
151 https://www.grid.ac/institutes/grid.6546.1 schema:alternateName Technical University of Darmstadt
152 schema:name Center for Advanced Security Research Darmstadt, Technische Universität Darmstadt, Germany
153 Institute of Ergonomics, Technische Universität Darmstadt, Germany
154 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...