A Study on Multi-level Robust Solution Search for Noisy Multi-objective Optimization Problems View Full Text


Ontology type: schema:Chapter     


Chapter Info

DATE

2015

AUTHORS

Tomohisa Hashimoto , Hiroyuki Sato

ABSTRACT

For noisy multi-objective optimization problems involving multiple noisy objective functions, we aim to develop a two-stage multi-criteria decision-making system considering not only the objective values but also the noise level of each solution. In the first stage, the decision maker selects a solution with a preferred balance of objective values from the obtained Pareto optimal solutions without considering the noise level. In the second stage, for the preferred balance of objective values, this system shows several solutions with different levels of the noise and guides the decision-making considering the noise level of solutions. For the two-stage multi-criteria decision-making system, in this work we propose an algorithm to simultaneously find multi-level robust solutions with different noise levels for each search direction in the objective space. The experimental results using noisy DTLZ2 and multi-objective knapsack problems shows that the proposed algorithm is able to obtain multi-level robust solutions with different noise levels for each search direction in a single run of the algorithm. More... »

PAGES

239-253

Book

TITLE

Proceedings of the 18th Asia Pacific Symposium on Intelligent and Evolutionary Systems - Volume 2

ISBN

978-3-319-13355-3
978-3-319-13356-0

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/978-3-319-13356-0_20

DOI

http://dx.doi.org/10.1007/978-3-319-13356-0_20

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1042379645


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/01", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Mathematical Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0102", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Applied Mathematics", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0103", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Numerical and Computational Mathematics", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "The University of Electro-Communications, 1-5-1 Chofugaoka, 182-8585, Chofu, Tokyo, Japan", 
          "id": "http://www.grid.ac/institutes/grid.266298.1", 
          "name": [
            "The University of Electro-Communications, 1-5-1 Chofugaoka, 182-8585, Chofu, Tokyo, Japan"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Hashimoto", 
        "givenName": "Tomohisa", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "The University of Electro-Communications, 1-5-1 Chofugaoka, 182-8585, Chofu, Tokyo, Japan", 
          "id": "http://www.grid.ac/institutes/grid.266298.1", 
          "name": [
            "The University of Electro-Communications, 1-5-1 Chofugaoka, 182-8585, Chofu, Tokyo, Japan"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Sato", 
        "givenName": "Hiroyuki", 
        "id": "sg:person.07750750604.05", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07750750604.05"
        ], 
        "type": "Person"
      }
    ], 
    "datePublished": "2015", 
    "datePublishedReg": "2015-01-01", 
    "description": "For noisy multi-objective optimization problems involving multiple noisy objective functions, we aim to develop a two-stage multi-criteria decision-making system considering not only the objective values but also the noise level of each solution. In the first stage, the decision maker selects a solution with a preferred balance of objective values from the obtained Pareto optimal solutions without considering the noise level. In the second stage, for the preferred balance of objective values, this system shows several solutions with different levels of the noise and guides the decision-making considering the noise level of solutions. For the two-stage multi-criteria decision-making system, in this work we propose an algorithm to simultaneously find multi-level robust solutions with different noise levels for each search direction in the objective space. The experimental results using noisy DTLZ2 and multi-objective knapsack problems shows that the proposed algorithm is able to obtain multi-level robust solutions with different noise levels for each search direction in a single run of the algorithm.", 
    "editor": [
      {
        "familyName": "Handa", 
        "givenName": "Hisashi", 
        "type": "Person"
      }, 
      {
        "familyName": "Ishibuchi", 
        "givenName": "Hisao", 
        "type": "Person"
      }, 
      {
        "familyName": "Ong", 
        "givenName": "Yew-Soon", 
        "type": "Person"
      }, 
      {
        "familyName": "Tan", 
        "givenName": "Kay-Chen", 
        "type": "Person"
      }
    ], 
    "genre": "chapter", 
    "id": "sg:pub.10.1007/978-3-319-13356-0_20", 
    "inLanguage": "en", 
    "isAccessibleForFree": false, 
    "isPartOf": {
      "isbn": [
        "978-3-319-13355-3", 
        "978-3-319-13356-0"
      ], 
      "name": "Proceedings of the 18th Asia Pacific Symposium on Intelligent and Evolutionary Systems - Volume 2", 
      "type": "Book"
    }, 
    "keywords": [
      "noisy multi-objective optimization problems", 
      "multi-objective optimization problem", 
      "objective value", 
      "multi-criteria decision-making system", 
      "optimization problem", 
      "search direction", 
      "multi-objective knapsack problem", 
      "noisy objective functions", 
      "robust solution", 
      "Pareto optimal solutions", 
      "different noise levels", 
      "objective space", 
      "decision-making system", 
      "optimal solution", 
      "objective function", 
      "solution search", 
      "noise level", 
      "knapsack problem", 
      "preferred balance", 
      "algorithm", 
      "solution", 
      "problem", 
      "DTLZ2", 
      "single run", 
      "experimental results", 
      "decision makers", 
      "system", 
      "space", 
      "noise", 
      "direction", 
      "second stage", 
      "first stage", 
      "different levels", 
      "values", 
      "function", 
      "search", 
      "work", 
      "results", 
      "run", 
      "balance", 
      "makers", 
      "stage", 
      "levels", 
      "study"
    ], 
    "name": "A Study on Multi-level Robust Solution Search for Noisy Multi-objective Optimization Problems", 
    "pagination": "239-253", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1042379645"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/978-3-319-13356-0_20"
        ]
      }
    ], 
    "publisher": {
      "name": "Springer Nature", 
      "type": "Organisation"
    }, 
    "sameAs": [
      "https://doi.org/10.1007/978-3-319-13356-0_20", 
      "https://app.dimensions.ai/details/publication/pub.1042379645"
    ], 
    "sdDataset": "chapters", 
    "sdDatePublished": "2022-05-10T10:37", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20220509/entities/gbq_results/chapter/chapter_121.jsonl", 
    "type": "Chapter", 
    "url": "https://doi.org/10.1007/978-3-319-13356-0_20"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/978-3-319-13356-0_20'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/978-3-319-13356-0_20'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/978-3-319-13356-0_20'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/978-3-319-13356-0_20'


 

This table displays all metadata directly associated to this object as RDF triples.

129 TRIPLES      23 PREDICATES      71 URIs      63 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/978-3-319-13356-0_20 schema:about anzsrc-for:01
2 anzsrc-for:0102
3 anzsrc-for:0103
4 schema:author Ne7e0013ec71a434fb755f1d79e9ed334
5 schema:datePublished 2015
6 schema:datePublishedReg 2015-01-01
7 schema:description For noisy multi-objective optimization problems involving multiple noisy objective functions, we aim to develop a two-stage multi-criteria decision-making system considering not only the objective values but also the noise level of each solution. In the first stage, the decision maker selects a solution with a preferred balance of objective values from the obtained Pareto optimal solutions without considering the noise level. In the second stage, for the preferred balance of objective values, this system shows several solutions with different levels of the noise and guides the decision-making considering the noise level of solutions. For the two-stage multi-criteria decision-making system, in this work we propose an algorithm to simultaneously find multi-level robust solutions with different noise levels for each search direction in the objective space. The experimental results using noisy DTLZ2 and multi-objective knapsack problems shows that the proposed algorithm is able to obtain multi-level robust solutions with different noise levels for each search direction in a single run of the algorithm.
8 schema:editor N2770f7d8b79e493e946c96e5e85cf5a0
9 schema:genre chapter
10 schema:inLanguage en
11 schema:isAccessibleForFree false
12 schema:isPartOf N853fb2ff8e1446eb956f1018931ccf14
13 schema:keywords DTLZ2
14 Pareto optimal solutions
15 algorithm
16 balance
17 decision makers
18 decision-making system
19 different levels
20 different noise levels
21 direction
22 experimental results
23 first stage
24 function
25 knapsack problem
26 levels
27 makers
28 multi-criteria decision-making system
29 multi-objective knapsack problem
30 multi-objective optimization problem
31 noise
32 noise level
33 noisy multi-objective optimization problems
34 noisy objective functions
35 objective function
36 objective space
37 objective value
38 optimal solution
39 optimization problem
40 preferred balance
41 problem
42 results
43 robust solution
44 run
45 search
46 search direction
47 second stage
48 single run
49 solution
50 solution search
51 space
52 stage
53 study
54 system
55 values
56 work
57 schema:name A Study on Multi-level Robust Solution Search for Noisy Multi-objective Optimization Problems
58 schema:pagination 239-253
59 schema:productId Nc4c0f62fff5f490caa8f34d27051c16b
60 Nceba822be4df4180ac781bb2257c10a8
61 schema:publisher Nb5e8d5b034864812bb98342b936fcd4a
62 schema:sameAs https://app.dimensions.ai/details/publication/pub.1042379645
63 https://doi.org/10.1007/978-3-319-13356-0_20
64 schema:sdDatePublished 2022-05-10T10:37
65 schema:sdLicense https://scigraph.springernature.com/explorer/license/
66 schema:sdPublisher Ncea7c8556f0e47169dc559bb8c6030ce
67 schema:url https://doi.org/10.1007/978-3-319-13356-0_20
68 sgo:license sg:explorer/license/
69 sgo:sdDataset chapters
70 rdf:type schema:Chapter
71 N2770f7d8b79e493e946c96e5e85cf5a0 rdf:first Nef7851bb86dd4ddbaa39386153975421
72 rdf:rest Nea792e7e29b840f895ea389523a73709
73 N555edf975df64c258ff631417dcf9d68 schema:familyName Tan
74 schema:givenName Kay-Chen
75 rdf:type schema:Person
76 N648ca490499c40ae8fcdff56871c4990 rdf:first N92749d0c0021479bb2ffe3b7a9838459
77 rdf:rest Nb605fec5080b480c96b885edfea789c7
78 N853fb2ff8e1446eb956f1018931ccf14 schema:isbn 978-3-319-13355-3
79 978-3-319-13356-0
80 schema:name Proceedings of the 18th Asia Pacific Symposium on Intelligent and Evolutionary Systems - Volume 2
81 rdf:type schema:Book
82 N92749d0c0021479bb2ffe3b7a9838459 schema:familyName Ong
83 schema:givenName Yew-Soon
84 rdf:type schema:Person
85 Nb5e8d5b034864812bb98342b936fcd4a schema:name Springer Nature
86 rdf:type schema:Organisation
87 Nb605fec5080b480c96b885edfea789c7 rdf:first N555edf975df64c258ff631417dcf9d68
88 rdf:rest rdf:nil
89 Nbd588864e7d6418282a6793a2619e5b9 rdf:first sg:person.07750750604.05
90 rdf:rest rdf:nil
91 Nc4c0f62fff5f490caa8f34d27051c16b schema:name doi
92 schema:value 10.1007/978-3-319-13356-0_20
93 rdf:type schema:PropertyValue
94 Ncea7c8556f0e47169dc559bb8c6030ce schema:name Springer Nature - SN SciGraph project
95 rdf:type schema:Organization
96 Nceba822be4df4180ac781bb2257c10a8 schema:name dimensions_id
97 schema:value pub.1042379645
98 rdf:type schema:PropertyValue
99 Ne700256ac04c43b586ce3aca6c1b1b89 schema:affiliation grid-institutes:grid.266298.1
100 schema:familyName Hashimoto
101 schema:givenName Tomohisa
102 rdf:type schema:Person
103 Ne7e0013ec71a434fb755f1d79e9ed334 rdf:first Ne700256ac04c43b586ce3aca6c1b1b89
104 rdf:rest Nbd588864e7d6418282a6793a2619e5b9
105 Nea792e7e29b840f895ea389523a73709 rdf:first Nf7a67f19e553471587896c9f361345ae
106 rdf:rest N648ca490499c40ae8fcdff56871c4990
107 Nef7851bb86dd4ddbaa39386153975421 schema:familyName Handa
108 schema:givenName Hisashi
109 rdf:type schema:Person
110 Nf7a67f19e553471587896c9f361345ae schema:familyName Ishibuchi
111 schema:givenName Hisao
112 rdf:type schema:Person
113 anzsrc-for:01 schema:inDefinedTermSet anzsrc-for:
114 schema:name Mathematical Sciences
115 rdf:type schema:DefinedTerm
116 anzsrc-for:0102 schema:inDefinedTermSet anzsrc-for:
117 schema:name Applied Mathematics
118 rdf:type schema:DefinedTerm
119 anzsrc-for:0103 schema:inDefinedTermSet anzsrc-for:
120 schema:name Numerical and Computational Mathematics
121 rdf:type schema:DefinedTerm
122 sg:person.07750750604.05 schema:affiliation grid-institutes:grid.266298.1
123 schema:familyName Sato
124 schema:givenName Hiroyuki
125 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07750750604.05
126 rdf:type schema:Person
127 grid-institutes:grid.266298.1 schema:alternateName The University of Electro-Communications, 1-5-1 Chofugaoka, 182-8585, Chofu, Tokyo, Japan
128 schema:name The University of Electro-Communications, 1-5-1 Chofugaoka, 182-8585, Chofu, Tokyo, Japan
129 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...