Ontology type: schema:Chapter
2015
AUTHORSTomohisa Hashimoto , Hiroyuki Sato
ABSTRACTFor noisy multi-objective optimization problems involving multiple noisy objective functions, we aim to develop a two-stage multi-criteria decision-making system considering not only the objective values but also the noise level of each solution. In the first stage, the decision maker selects a solution with a preferred balance of objective values from the obtained Pareto optimal solutions without considering the noise level. In the second stage, for the preferred balance of objective values, this system shows several solutions with different levels of the noise and guides the decision-making considering the noise level of solutions. For the two-stage multi-criteria decision-making system, in this work we propose an algorithm to simultaneously find multi-level robust solutions with different noise levels for each search direction in the objective space. The experimental results using noisy DTLZ2 and multi-objective knapsack problems shows that the proposed algorithm is able to obtain multi-level robust solutions with different noise levels for each search direction in a single run of the algorithm. More... »
PAGES239-253
Proceedings of the 18th Asia Pacific Symposium on Intelligent and Evolutionary Systems - Volume 2
ISBN
978-3-319-13355-3
978-3-319-13356-0
http://scigraph.springernature.com/pub.10.1007/978-3-319-13356-0_20
DOIhttp://dx.doi.org/10.1007/978-3-319-13356-0_20
DIMENSIONShttps://app.dimensions.ai/details/publication/pub.1042379645
JSON-LD is the canonical representation for SciGraph data.
TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT
[
{
"@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json",
"about": [
{
"id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/01",
"inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/",
"name": "Mathematical Sciences",
"type": "DefinedTerm"
},
{
"id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0102",
"inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/",
"name": "Applied Mathematics",
"type": "DefinedTerm"
},
{
"id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0103",
"inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/",
"name": "Numerical and Computational Mathematics",
"type": "DefinedTerm"
}
],
"author": [
{
"affiliation": {
"alternateName": "The University of Electro-Communications, 1-5-1 Chofugaoka, 182-8585, Chofu, Tokyo, Japan",
"id": "http://www.grid.ac/institutes/grid.266298.1",
"name": [
"The University of Electro-Communications, 1-5-1 Chofugaoka, 182-8585, Chofu, Tokyo, Japan"
],
"type": "Organization"
},
"familyName": "Hashimoto",
"givenName": "Tomohisa",
"type": "Person"
},
{
"affiliation": {
"alternateName": "The University of Electro-Communications, 1-5-1 Chofugaoka, 182-8585, Chofu, Tokyo, Japan",
"id": "http://www.grid.ac/institutes/grid.266298.1",
"name": [
"The University of Electro-Communications, 1-5-1 Chofugaoka, 182-8585, Chofu, Tokyo, Japan"
],
"type": "Organization"
},
"familyName": "Sato",
"givenName": "Hiroyuki",
"id": "sg:person.07750750604.05",
"sameAs": [
"https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07750750604.05"
],
"type": "Person"
}
],
"datePublished": "2015",
"datePublishedReg": "2015-01-01",
"description": "For noisy multi-objective optimization problems involving multiple noisy objective functions, we aim to develop a two-stage multi-criteria decision-making system considering not only the objective values but also the noise level of each solution. In the first stage, the decision maker selects a solution with a preferred balance of objective values from the obtained Pareto optimal solutions without considering the noise level. In the second stage, for the preferred balance of objective values, this system shows several solutions with different levels of the noise and guides the decision-making considering the noise level of solutions. For the two-stage multi-criteria decision-making system, in this work we propose an algorithm to simultaneously find multi-level robust solutions with different noise levels for each search direction in the objective space. The experimental results using noisy DTLZ2 and multi-objective knapsack problems shows that the proposed algorithm is able to obtain multi-level robust solutions with different noise levels for each search direction in a single run of the algorithm.",
"editor": [
{
"familyName": "Handa",
"givenName": "Hisashi",
"type": "Person"
},
{
"familyName": "Ishibuchi",
"givenName": "Hisao",
"type": "Person"
},
{
"familyName": "Ong",
"givenName": "Yew-Soon",
"type": "Person"
},
{
"familyName": "Tan",
"givenName": "Kay-Chen",
"type": "Person"
}
],
"genre": "chapter",
"id": "sg:pub.10.1007/978-3-319-13356-0_20",
"inLanguage": "en",
"isAccessibleForFree": false,
"isPartOf": {
"isbn": [
"978-3-319-13355-3",
"978-3-319-13356-0"
],
"name": "Proceedings of the 18th Asia Pacific Symposium on Intelligent and Evolutionary Systems - Volume 2",
"type": "Book"
},
"keywords": [
"noisy multi-objective optimization problems",
"multi-objective optimization problem",
"objective value",
"multi-criteria decision-making system",
"optimization problem",
"search direction",
"multi-objective knapsack problem",
"noisy objective functions",
"robust solution",
"Pareto optimal solutions",
"different noise levels",
"objective space",
"decision-making system",
"optimal solution",
"objective function",
"solution search",
"noise level",
"knapsack problem",
"preferred balance",
"algorithm",
"solution",
"problem",
"DTLZ2",
"single run",
"experimental results",
"decision makers",
"system",
"space",
"noise",
"direction",
"second stage",
"first stage",
"different levels",
"values",
"function",
"search",
"work",
"results",
"run",
"balance",
"makers",
"stage",
"levels",
"study"
],
"name": "A Study on Multi-level Robust Solution Search for Noisy Multi-objective Optimization Problems",
"pagination": "239-253",
"productId": [
{
"name": "dimensions_id",
"type": "PropertyValue",
"value": [
"pub.1042379645"
]
},
{
"name": "doi",
"type": "PropertyValue",
"value": [
"10.1007/978-3-319-13356-0_20"
]
}
],
"publisher": {
"name": "Springer Nature",
"type": "Organisation"
},
"sameAs": [
"https://doi.org/10.1007/978-3-319-13356-0_20",
"https://app.dimensions.ai/details/publication/pub.1042379645"
],
"sdDataset": "chapters",
"sdDatePublished": "2022-05-10T10:37",
"sdLicense": "https://scigraph.springernature.com/explorer/license/",
"sdPublisher": {
"name": "Springer Nature - SN SciGraph project",
"type": "Organization"
},
"sdSource": "s3://com-springernature-scigraph/baseset/20220509/entities/gbq_results/chapter/chapter_121.jsonl",
"type": "Chapter",
"url": "https://doi.org/10.1007/978-3-319-13356-0_20"
}
]
Download the RDF metadata as: json-ld nt turtle xml License info
JSON-LD is a popular format for linked data which is fully compatible with JSON.
curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/978-3-319-13356-0_20'
N-Triples is a line-based linked data format ideal for batch operations.
curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/978-3-319-13356-0_20'
Turtle is a human-readable linked data format.
curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/978-3-319-13356-0_20'
RDF/XML is a standard XML format for linked data.
curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/978-3-319-13356-0_20'
This table displays all metadata directly associated to this object as RDF triples.
129 TRIPLES
23 PREDICATES
71 URIs
63 LITERALS
7 BLANK NODES
Subject | Predicate | Object | |
---|---|---|---|
1 | sg:pub.10.1007/978-3-319-13356-0_20 | schema:about | anzsrc-for:01 |
2 | ″ | ″ | anzsrc-for:0102 |
3 | ″ | ″ | anzsrc-for:0103 |
4 | ″ | schema:author | Ne7e0013ec71a434fb755f1d79e9ed334 |
5 | ″ | schema:datePublished | 2015 |
6 | ″ | schema:datePublishedReg | 2015-01-01 |
7 | ″ | schema:description | For noisy multi-objective optimization problems involving multiple noisy objective functions, we aim to develop a two-stage multi-criteria decision-making system considering not only the objective values but also the noise level of each solution. In the first stage, the decision maker selects a solution with a preferred balance of objective values from the obtained Pareto optimal solutions without considering the noise level. In the second stage, for the preferred balance of objective values, this system shows several solutions with different levels of the noise and guides the decision-making considering the noise level of solutions. For the two-stage multi-criteria decision-making system, in this work we propose an algorithm to simultaneously find multi-level robust solutions with different noise levels for each search direction in the objective space. The experimental results using noisy DTLZ2 and multi-objective knapsack problems shows that the proposed algorithm is able to obtain multi-level robust solutions with different noise levels for each search direction in a single run of the algorithm. |
8 | ″ | schema:editor | N2770f7d8b79e493e946c96e5e85cf5a0 |
9 | ″ | schema:genre | chapter |
10 | ″ | schema:inLanguage | en |
11 | ″ | schema:isAccessibleForFree | false |
12 | ″ | schema:isPartOf | N853fb2ff8e1446eb956f1018931ccf14 |
13 | ″ | schema:keywords | DTLZ2 |
14 | ″ | ″ | Pareto optimal solutions |
15 | ″ | ″ | algorithm |
16 | ″ | ″ | balance |
17 | ″ | ″ | decision makers |
18 | ″ | ″ | decision-making system |
19 | ″ | ″ | different levels |
20 | ″ | ″ | different noise levels |
21 | ″ | ″ | direction |
22 | ″ | ″ | experimental results |
23 | ″ | ″ | first stage |
24 | ″ | ″ | function |
25 | ″ | ″ | knapsack problem |
26 | ″ | ″ | levels |
27 | ″ | ″ | makers |
28 | ″ | ″ | multi-criteria decision-making system |
29 | ″ | ″ | multi-objective knapsack problem |
30 | ″ | ″ | multi-objective optimization problem |
31 | ″ | ″ | noise |
32 | ″ | ″ | noise level |
33 | ″ | ″ | noisy multi-objective optimization problems |
34 | ″ | ″ | noisy objective functions |
35 | ″ | ″ | objective function |
36 | ″ | ″ | objective space |
37 | ″ | ″ | objective value |
38 | ″ | ″ | optimal solution |
39 | ″ | ″ | optimization problem |
40 | ″ | ″ | preferred balance |
41 | ″ | ″ | problem |
42 | ″ | ″ | results |
43 | ″ | ″ | robust solution |
44 | ″ | ″ | run |
45 | ″ | ″ | search |
46 | ″ | ″ | search direction |
47 | ″ | ″ | second stage |
48 | ″ | ″ | single run |
49 | ″ | ″ | solution |
50 | ″ | ″ | solution search |
51 | ″ | ″ | space |
52 | ″ | ″ | stage |
53 | ″ | ″ | study |
54 | ″ | ″ | system |
55 | ″ | ″ | values |
56 | ″ | ″ | work |
57 | ″ | schema:name | A Study on Multi-level Robust Solution Search for Noisy Multi-objective Optimization Problems |
58 | ″ | schema:pagination | 239-253 |
59 | ″ | schema:productId | Nc4c0f62fff5f490caa8f34d27051c16b |
60 | ″ | ″ | Nceba822be4df4180ac781bb2257c10a8 |
61 | ″ | schema:publisher | Nb5e8d5b034864812bb98342b936fcd4a |
62 | ″ | schema:sameAs | https://app.dimensions.ai/details/publication/pub.1042379645 |
63 | ″ | ″ | https://doi.org/10.1007/978-3-319-13356-0_20 |
64 | ″ | schema:sdDatePublished | 2022-05-10T10:37 |
65 | ″ | schema:sdLicense | https://scigraph.springernature.com/explorer/license/ |
66 | ″ | schema:sdPublisher | Ncea7c8556f0e47169dc559bb8c6030ce |
67 | ″ | schema:url | https://doi.org/10.1007/978-3-319-13356-0_20 |
68 | ″ | sgo:license | sg:explorer/license/ |
69 | ″ | sgo:sdDataset | chapters |
70 | ″ | rdf:type | schema:Chapter |
71 | N2770f7d8b79e493e946c96e5e85cf5a0 | rdf:first | Nef7851bb86dd4ddbaa39386153975421 |
72 | ″ | rdf:rest | Nea792e7e29b840f895ea389523a73709 |
73 | N555edf975df64c258ff631417dcf9d68 | schema:familyName | Tan |
74 | ″ | schema:givenName | Kay-Chen |
75 | ″ | rdf:type | schema:Person |
76 | N648ca490499c40ae8fcdff56871c4990 | rdf:first | N92749d0c0021479bb2ffe3b7a9838459 |
77 | ″ | rdf:rest | Nb605fec5080b480c96b885edfea789c7 |
78 | N853fb2ff8e1446eb956f1018931ccf14 | schema:isbn | 978-3-319-13355-3 |
79 | ″ | ″ | 978-3-319-13356-0 |
80 | ″ | schema:name | Proceedings of the 18th Asia Pacific Symposium on Intelligent and Evolutionary Systems - Volume 2 |
81 | ″ | rdf:type | schema:Book |
82 | N92749d0c0021479bb2ffe3b7a9838459 | schema:familyName | Ong |
83 | ″ | schema:givenName | Yew-Soon |
84 | ″ | rdf:type | schema:Person |
85 | Nb5e8d5b034864812bb98342b936fcd4a | schema:name | Springer Nature |
86 | ″ | rdf:type | schema:Organisation |
87 | Nb605fec5080b480c96b885edfea789c7 | rdf:first | N555edf975df64c258ff631417dcf9d68 |
88 | ″ | rdf:rest | rdf:nil |
89 | Nbd588864e7d6418282a6793a2619e5b9 | rdf:first | sg:person.07750750604.05 |
90 | ″ | rdf:rest | rdf:nil |
91 | Nc4c0f62fff5f490caa8f34d27051c16b | schema:name | doi |
92 | ″ | schema:value | 10.1007/978-3-319-13356-0_20 |
93 | ″ | rdf:type | schema:PropertyValue |
94 | Ncea7c8556f0e47169dc559bb8c6030ce | schema:name | Springer Nature - SN SciGraph project |
95 | ″ | rdf:type | schema:Organization |
96 | Nceba822be4df4180ac781bb2257c10a8 | schema:name | dimensions_id |
97 | ″ | schema:value | pub.1042379645 |
98 | ″ | rdf:type | schema:PropertyValue |
99 | Ne700256ac04c43b586ce3aca6c1b1b89 | schema:affiliation | grid-institutes:grid.266298.1 |
100 | ″ | schema:familyName | Hashimoto |
101 | ″ | schema:givenName | Tomohisa |
102 | ″ | rdf:type | schema:Person |
103 | Ne7e0013ec71a434fb755f1d79e9ed334 | rdf:first | Ne700256ac04c43b586ce3aca6c1b1b89 |
104 | ″ | rdf:rest | Nbd588864e7d6418282a6793a2619e5b9 |
105 | Nea792e7e29b840f895ea389523a73709 | rdf:first | Nf7a67f19e553471587896c9f361345ae |
106 | ″ | rdf:rest | N648ca490499c40ae8fcdff56871c4990 |
107 | Nef7851bb86dd4ddbaa39386153975421 | schema:familyName | Handa |
108 | ″ | schema:givenName | Hisashi |
109 | ″ | rdf:type | schema:Person |
110 | Nf7a67f19e553471587896c9f361345ae | schema:familyName | Ishibuchi |
111 | ″ | schema:givenName | Hisao |
112 | ″ | rdf:type | schema:Person |
113 | anzsrc-for:01 | schema:inDefinedTermSet | anzsrc-for: |
114 | ″ | schema:name | Mathematical Sciences |
115 | ″ | rdf:type | schema:DefinedTerm |
116 | anzsrc-for:0102 | schema:inDefinedTermSet | anzsrc-for: |
117 | ″ | schema:name | Applied Mathematics |
118 | ″ | rdf:type | schema:DefinedTerm |
119 | anzsrc-for:0103 | schema:inDefinedTermSet | anzsrc-for: |
120 | ″ | schema:name | Numerical and Computational Mathematics |
121 | ″ | rdf:type | schema:DefinedTerm |
122 | sg:person.07750750604.05 | schema:affiliation | grid-institutes:grid.266298.1 |
123 | ″ | schema:familyName | Sato |
124 | ″ | schema:givenName | Hiroyuki |
125 | ″ | schema:sameAs | https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07750750604.05 |
126 | ″ | rdf:type | schema:Person |
127 | grid-institutes:grid.266298.1 | schema:alternateName | The University of Electro-Communications, 1-5-1 Chofugaoka, 182-8585, Chofu, Tokyo, Japan |
128 | ″ | schema:name | The University of Electro-Communications, 1-5-1 Chofugaoka, 182-8585, Chofu, Tokyo, Japan |
129 | ″ | rdf:type | schema:Organization |