An Extended Agent Based Model for Service Delivery Optimization View Full Text


Ontology type: schema:Chapter     


Chapter Info

DATE

2014

AUTHORS

Mohammadreza Mohagheghian , Renuka Sindhgatta , Aditya Ghose

ABSTRACT

Service delivery optimization has an important impact on organizational profitability, where changes in allocation of resources (e.g. humans, equipment and materials) to services increases profit. Simulation and optimization techniques generally suffer from three main drawbacks; firstly, the limited knowledge and skill of researchers in modeling social complexities. Secondly, having assumed that a fairly realistic model of the problem is simulated, finding optimal solutions requires an exhaustive search that is almost impossible in problems with a large search space. Thirdly, mathematical optimization techniques often require the acquisition of knowledge in a central unit, which is problematic e.g. for privacy reasons. This article introduces a new technique, which combines Agent Based Modeling (ABM) and Distribution Constraint Optimization (DCOP) to overcome these difficulties. Our empirical results present a successful model for finding optimized resourced allocation settings in comparison with two different ABM simulated models on a sample of a real-life service delivery problem. More... »

PAGES

270-285

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/978-3-319-13191-7_22

DOI

http://dx.doi.org/10.1007/978-3-319-13191-7_22

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1020512610


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/08", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Information and Computing Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0801", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Artificial Intelligence and Image Processing", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Decision Systems Laboratory School of Computer Science and Software Engineering, University of Wollongong, 2522, NSW, Australia", 
          "id": "http://www.grid.ac/institutes/grid.1007.6", 
          "name": [
            "Decision Systems Laboratory School of Computer Science and Software Engineering, University of Wollongong, 2522, NSW, Australia"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Mohagheghian", 
        "givenName": "Mohammadreza", 
        "id": "sg:person.014256757511.72", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014256757511.72"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "IBM Research India, India", 
          "id": "http://www.grid.ac/institutes/grid.481550.d", 
          "name": [
            "IBM Research India, India"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Sindhgatta", 
        "givenName": "Renuka", 
        "id": "sg:person.015651720511.55", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015651720511.55"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Decision Systems Laboratory School of Computer Science and Software Engineering, University of Wollongong, 2522, NSW, Australia", 
          "id": "http://www.grid.ac/institutes/grid.1007.6", 
          "name": [
            "Decision Systems Laboratory School of Computer Science and Software Engineering, University of Wollongong, 2522, NSW, Australia"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Ghose", 
        "givenName": "Aditya", 
        "id": "sg:person.015573517335.70", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015573517335.70"
        ], 
        "type": "Person"
      }
    ], 
    "datePublished": "2014", 
    "datePublishedReg": "2014-01-01", 
    "description": "Service delivery optimization has an important impact on organizational profitability, where changes in allocation of resources (e.g. humans, equipment and materials) to services increases profit. Simulation and optimization techniques generally suffer from three main drawbacks; firstly, the limited knowledge and skill of researchers in modeling social complexities. Secondly, having assumed that a fairly realistic model of the problem is simulated, finding optimal solutions requires an exhaustive search that is almost impossible in problems with a large search space. Thirdly, mathematical optimization techniques often require the acquisition of knowledge in a central unit, which is problematic e.g. for privacy reasons. This article introduces a new technique, which combines Agent Based Modeling (ABM) and Distribution Constraint Optimization (DCOP) to overcome these difficulties. Our empirical results present a successful model for finding optimized resourced allocation settings in comparison with two different ABM simulated models on a sample of a real-life service delivery problem.", 
    "editor": [
      {
        "familyName": "Dam", 
        "givenName": "Hoa Khanh", 
        "type": "Person"
      }, 
      {
        "familyName": "Pitt", 
        "givenName": "Jeremy", 
        "type": "Person"
      }, 
      {
        "familyName": "Xu", 
        "givenName": "Yang", 
        "type": "Person"
      }, 
      {
        "familyName": "Governatori", 
        "givenName": "Guido", 
        "type": "Person"
      }, 
      {
        "familyName": "Ito", 
        "givenName": "Takayuki", 
        "type": "Person"
      }
    ], 
    "genre": "chapter", 
    "id": "sg:pub.10.1007/978-3-319-13191-7_22", 
    "isAccessibleForFree": false, 
    "isPartOf": {
      "isbn": [
        "978-3-319-13190-0", 
        "978-3-319-13191-7"
      ], 
      "name": "PRIMA 2014: Principles and Practice of Multi-Agent Systems", 
      "type": "Book"
    }, 
    "keywords": [
      "Agent Based Modeling", 
      "large search space", 
      "optimization techniques", 
      "delivery optimization", 
      "Agent Based Model", 
      "privacy reasons", 
      "search space", 
      "constraint optimization", 
      "exhaustive search", 
      "Based Modeling", 
      "Based Model", 
      "mathematical optimization techniques", 
      "optimal solution", 
      "delivery problem", 
      "service delivery problems", 
      "allocation settings", 
      "main drawback", 
      "central unit", 
      "allocation of resources", 
      "optimization", 
      "acquisition of knowledge", 
      "empirical results", 
      "new technique", 
      "increase profits", 
      "technique", 
      "complexity", 
      "realistic model", 
      "skills of researchers", 
      "model", 
      "allocation", 
      "successful model", 
      "drawbacks", 
      "knowledge", 
      "resources", 
      "search", 
      "organizational profitability", 
      "researchers", 
      "modeling", 
      "acquisition", 
      "space", 
      "simulations", 
      "solution", 
      "profit", 
      "difficulties", 
      "important impact", 
      "limited knowledge", 
      "social complexity", 
      "results", 
      "units", 
      "setting", 
      "skills", 
      "article", 
      "profitability", 
      "reasons", 
      "comparison", 
      "problem", 
      "impact", 
      "changes", 
      "samples"
    ], 
    "name": "An Extended Agent Based Model for Service Delivery Optimization", 
    "pagination": "270-285", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1020512610"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/978-3-319-13191-7_22"
        ]
      }
    ], 
    "publisher": {
      "name": "Springer Nature", 
      "type": "Organisation"
    }, 
    "sameAs": [
      "https://doi.org/10.1007/978-3-319-13191-7_22", 
      "https://app.dimensions.ai/details/publication/pub.1020512610"
    ], 
    "sdDataset": "chapters", 
    "sdDatePublished": "2022-12-01T06:55", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20221201/entities/gbq_results/chapter/chapter_70.jsonl", 
    "type": "Chapter", 
    "url": "https://doi.org/10.1007/978-3-319-13191-7_22"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/978-3-319-13191-7_22'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/978-3-319-13191-7_22'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/978-3-319-13191-7_22'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/978-3-319-13191-7_22'


 

This table displays all metadata directly associated to this object as RDF triples.

155 TRIPLES      22 PREDICATES      84 URIs      77 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/978-3-319-13191-7_22 schema:about anzsrc-for:08
2 anzsrc-for:0801
3 schema:author Nfc62b3052c3f4c4b848c67d8c820a7dc
4 schema:datePublished 2014
5 schema:datePublishedReg 2014-01-01
6 schema:description Service delivery optimization has an important impact on organizational profitability, where changes in allocation of resources (e.g. humans, equipment and materials) to services increases profit. Simulation and optimization techniques generally suffer from three main drawbacks; firstly, the limited knowledge and skill of researchers in modeling social complexities. Secondly, having assumed that a fairly realistic model of the problem is simulated, finding optimal solutions requires an exhaustive search that is almost impossible in problems with a large search space. Thirdly, mathematical optimization techniques often require the acquisition of knowledge in a central unit, which is problematic e.g. for privacy reasons. This article introduces a new technique, which combines Agent Based Modeling (ABM) and Distribution Constraint Optimization (DCOP) to overcome these difficulties. Our empirical results present a successful model for finding optimized resourced allocation settings in comparison with two different ABM simulated models on a sample of a real-life service delivery problem.
7 schema:editor N8af09d36f69a4b1d9e1ff2c5d63c07f3
8 schema:genre chapter
9 schema:isAccessibleForFree false
10 schema:isPartOf N5adcb30506554dfcb6addecabd27d31e
11 schema:keywords Agent Based Model
12 Agent Based Modeling
13 Based Model
14 Based Modeling
15 acquisition
16 acquisition of knowledge
17 allocation
18 allocation of resources
19 allocation settings
20 article
21 central unit
22 changes
23 comparison
24 complexity
25 constraint optimization
26 delivery optimization
27 delivery problem
28 difficulties
29 drawbacks
30 empirical results
31 exhaustive search
32 impact
33 important impact
34 increase profits
35 knowledge
36 large search space
37 limited knowledge
38 main drawback
39 mathematical optimization techniques
40 model
41 modeling
42 new technique
43 optimal solution
44 optimization
45 optimization techniques
46 organizational profitability
47 privacy reasons
48 problem
49 profit
50 profitability
51 realistic model
52 reasons
53 researchers
54 resources
55 results
56 samples
57 search
58 search space
59 service delivery problems
60 setting
61 simulations
62 skills
63 skills of researchers
64 social complexity
65 solution
66 space
67 successful model
68 technique
69 units
70 schema:name An Extended Agent Based Model for Service Delivery Optimization
71 schema:pagination 270-285
72 schema:productId N88e9edb4e26a42c1a8c078e5f8682a5a
73 Nb09051b96f72467ead8f89d1f689fe4b
74 schema:publisher N9dedcf3484c74b5b8829fdd6ec8d3c35
75 schema:sameAs https://app.dimensions.ai/details/publication/pub.1020512610
76 https://doi.org/10.1007/978-3-319-13191-7_22
77 schema:sdDatePublished 2022-12-01T06:55
78 schema:sdLicense https://scigraph.springernature.com/explorer/license/
79 schema:sdPublisher N65483a436af64f2297693925e0eeea95
80 schema:url https://doi.org/10.1007/978-3-319-13191-7_22
81 sgo:license sg:explorer/license/
82 sgo:sdDataset chapters
83 rdf:type schema:Chapter
84 N196dbd646ba84c13bf9538e2e9b41b80 schema:familyName Pitt
85 schema:givenName Jeremy
86 rdf:type schema:Person
87 N2015da20877d454a927af085c3020048 rdf:first Nfceb5e3985d64880b16e7262f2a428ec
88 rdf:rest Nf2ae2096f7cd4053b74b7275f3bf0586
89 N21c867f03992414bad6aa77da33c6434 schema:familyName Ito
90 schema:givenName Takayuki
91 rdf:type schema:Person
92 N296c9b43b322429090ee818d3b159466 schema:familyName Dam
93 schema:givenName Hoa Khanh
94 rdf:type schema:Person
95 N5adcb30506554dfcb6addecabd27d31e schema:isbn 978-3-319-13190-0
96 978-3-319-13191-7
97 schema:name PRIMA 2014: Principles and Practice of Multi-Agent Systems
98 rdf:type schema:Book
99 N65483a436af64f2297693925e0eeea95 schema:name Springer Nature - SN SciGraph project
100 rdf:type schema:Organization
101 N88e9edb4e26a42c1a8c078e5f8682a5a schema:name dimensions_id
102 schema:value pub.1020512610
103 rdf:type schema:PropertyValue
104 N8af09d36f69a4b1d9e1ff2c5d63c07f3 rdf:first N296c9b43b322429090ee818d3b159466
105 rdf:rest Nc92f37034a8e4963b5334ff152905584
106 N8d6bae5788ab40a898f6b7b3aab0e57e rdf:first N21c867f03992414bad6aa77da33c6434
107 rdf:rest rdf:nil
108 N9dedcf3484c74b5b8829fdd6ec8d3c35 schema:name Springer Nature
109 rdf:type schema:Organisation
110 Nb09051b96f72467ead8f89d1f689fe4b schema:name doi
111 schema:value 10.1007/978-3-319-13191-7_22
112 rdf:type schema:PropertyValue
113 Nc92f37034a8e4963b5334ff152905584 rdf:first N196dbd646ba84c13bf9538e2e9b41b80
114 rdf:rest N2015da20877d454a927af085c3020048
115 Nc970440d8d9248249104757501dbd774 rdf:first sg:person.015573517335.70
116 rdf:rest rdf:nil
117 Ncba7e9a053c7449184a1163c7a78b2a8 schema:familyName Governatori
118 schema:givenName Guido
119 rdf:type schema:Person
120 Nf2ae2096f7cd4053b74b7275f3bf0586 rdf:first Ncba7e9a053c7449184a1163c7a78b2a8
121 rdf:rest N8d6bae5788ab40a898f6b7b3aab0e57e
122 Nf84af42e9a2547e19ec794459e14a5d4 rdf:first sg:person.015651720511.55
123 rdf:rest Nc970440d8d9248249104757501dbd774
124 Nfc62b3052c3f4c4b848c67d8c820a7dc rdf:first sg:person.014256757511.72
125 rdf:rest Nf84af42e9a2547e19ec794459e14a5d4
126 Nfceb5e3985d64880b16e7262f2a428ec schema:familyName Xu
127 schema:givenName Yang
128 rdf:type schema:Person
129 anzsrc-for:08 schema:inDefinedTermSet anzsrc-for:
130 schema:name Information and Computing Sciences
131 rdf:type schema:DefinedTerm
132 anzsrc-for:0801 schema:inDefinedTermSet anzsrc-for:
133 schema:name Artificial Intelligence and Image Processing
134 rdf:type schema:DefinedTerm
135 sg:person.014256757511.72 schema:affiliation grid-institutes:grid.1007.6
136 schema:familyName Mohagheghian
137 schema:givenName Mohammadreza
138 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014256757511.72
139 rdf:type schema:Person
140 sg:person.015573517335.70 schema:affiliation grid-institutes:grid.1007.6
141 schema:familyName Ghose
142 schema:givenName Aditya
143 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015573517335.70
144 rdf:type schema:Person
145 sg:person.015651720511.55 schema:affiliation grid-institutes:grid.481550.d
146 schema:familyName Sindhgatta
147 schema:givenName Renuka
148 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015651720511.55
149 rdf:type schema:Person
150 grid-institutes:grid.1007.6 schema:alternateName Decision Systems Laboratory School of Computer Science and Software Engineering, University of Wollongong, 2522, NSW, Australia
151 schema:name Decision Systems Laboratory School of Computer Science and Software Engineering, University of Wollongong, 2522, NSW, Australia
152 rdf:type schema:Organization
153 grid-institutes:grid.481550.d schema:alternateName IBM Research India, India
154 schema:name IBM Research India, India
155 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...