Security Amplification for the Composition of Block Ciphers: Simpler Proofs and New Results View Full Text


Ontology type: schema:Chapter      Open Access: True


Chapter Info

DATE

2014-11-29

AUTHORS

Benoit Cogliati , Jacques Patarin , Yannick Seurin

ABSTRACT

Security amplification results for block ciphers typically state that cascading (i.e., composing with independent keys) two (or more) block ciphers yields a new block cipher that offers better security against some class of adversaries and/or that resists stronger adversaries than each of its components. One of the most important results in this respect is the so-called “two weak make one strong” theorem, first established up to logarithmic terms by Maurer and Pietrzak (TCC 2004), and later optimally tightened by Maurer, Pietrzak, and Renner (CRYPTO 2007), which states that, in the information-theoretic setting, cascading \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$F$$\end{document} and \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$G^{-1}$$\end{document}, where \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$F$$\end{document} and \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$G$$\end{document} are respectively \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(q,\varepsilon _F)$$\end{document}-secure and \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(q,\varepsilon _G)$$\end{document}-secure against non-adaptive chosen-plaintext (NCPA) attacks, yields a block cipher which is \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(q,\varepsilon _F+\varepsilon _G)$$\end{document}-secure against adaptive chosen-plaintext and ciphertext (CCA) attacks. The first contribution of this work is a surprisingly simple proof of this theorem, relying on Patarin’s H-coefficient method. We then extend our new proof to obtain new results (still in the information-theoretic setting). In particular, we prove a new composition theorem (which can be seen as the generalization of the “two weak make one strong” theorem to the composition of \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$n>2$$\end{document} block ciphers) which provides both amplification of the advantage and strengthening of the distinguisher’s class in some optimal way (indeed we prove that our new composition theorem is tight up to some constant). More... »

PAGES

129-146

Book

TITLE

Selected Areas in Cryptography -- SAC 2014

ISBN

978-3-319-13050-7
978-3-319-13051-4

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/978-3-319-13051-4_8

DOI

http://dx.doi.org/10.1007/978-3-319-13051-4_8

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1047676121


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/08", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Information and Computing Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0804", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Data Format", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "University of Versailles, Versailles, France", 
          "id": "http://www.grid.ac/institutes/grid.12832.3a", 
          "name": [
            "University of Versailles, Versailles, France"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Cogliati", 
        "givenName": "Benoit", 
        "id": "sg:person.010731237165.96", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010731237165.96"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of Versailles, Versailles, France", 
          "id": "http://www.grid.ac/institutes/grid.12832.3a", 
          "name": [
            "University of Versailles, Versailles, France"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Patarin", 
        "givenName": "Jacques", 
        "id": "sg:person.012254315647.07", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012254315647.07"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "ANSSI, Paris, France", 
          "id": "http://www.grid.ac/institutes/None", 
          "name": [
            "ANSSI, Paris, France"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Seurin", 
        "givenName": "Yannick", 
        "id": "sg:person.011724731171.01", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011724731171.01"
        ], 
        "type": "Person"
      }
    ], 
    "datePublished": "2014-11-29", 
    "datePublishedReg": "2014-11-29", 
    "description": "Security amplification results for block ciphers typically state that cascading (i.e., composing with independent keys) two (or more) block ciphers yields a new block cipher that offers better security against some class of adversaries and/or that resists stronger adversaries than each of its components. One of the most important results in this respect is the so-called \u201ctwo weak make one strong\u201d theorem, first established up\u00a0to logarithmic terms by Maurer and Pietrzak (TCC\u00a02004), and later optimally tightened by Maurer, Pietrzak, and Renner (CRYPTO\u00a02007), which states that, in the information-theoretic setting, cascading \\documentclass[12pt]{minimal}\n\t\t\t\t\\usepackage{amsmath}\n\t\t\t\t\\usepackage{wasysym}\n\t\t\t\t\\usepackage{amsfonts}\n\t\t\t\t\\usepackage{amssymb}\n\t\t\t\t\\usepackage{amsbsy}\n\t\t\t\t\\usepackage{mathrsfs}\n\t\t\t\t\\usepackage{upgreek}\n\t\t\t\t\\setlength{\\oddsidemargin}{-69pt}\n\t\t\t\t\\begin{document}$$F$$\\end{document} and \\documentclass[12pt]{minimal}\n\t\t\t\t\\usepackage{amsmath}\n\t\t\t\t\\usepackage{wasysym}\n\t\t\t\t\\usepackage{amsfonts}\n\t\t\t\t\\usepackage{amssymb}\n\t\t\t\t\\usepackage{amsbsy}\n\t\t\t\t\\usepackage{mathrsfs}\n\t\t\t\t\\usepackage{upgreek}\n\t\t\t\t\\setlength{\\oddsidemargin}{-69pt}\n\t\t\t\t\\begin{document}$$G^{-1}$$\\end{document}, where \\documentclass[12pt]{minimal}\n\t\t\t\t\\usepackage{amsmath}\n\t\t\t\t\\usepackage{wasysym}\n\t\t\t\t\\usepackage{amsfonts}\n\t\t\t\t\\usepackage{amssymb}\n\t\t\t\t\\usepackage{amsbsy}\n\t\t\t\t\\usepackage{mathrsfs}\n\t\t\t\t\\usepackage{upgreek}\n\t\t\t\t\\setlength{\\oddsidemargin}{-69pt}\n\t\t\t\t\\begin{document}$$F$$\\end{document} and \\documentclass[12pt]{minimal}\n\t\t\t\t\\usepackage{amsmath}\n\t\t\t\t\\usepackage{wasysym}\n\t\t\t\t\\usepackage{amsfonts}\n\t\t\t\t\\usepackage{amssymb}\n\t\t\t\t\\usepackage{amsbsy}\n\t\t\t\t\\usepackage{mathrsfs}\n\t\t\t\t\\usepackage{upgreek}\n\t\t\t\t\\setlength{\\oddsidemargin}{-69pt}\n\t\t\t\t\\begin{document}$$G$$\\end{document} are respectively \\documentclass[12pt]{minimal}\n\t\t\t\t\\usepackage{amsmath}\n\t\t\t\t\\usepackage{wasysym}\n\t\t\t\t\\usepackage{amsfonts}\n\t\t\t\t\\usepackage{amssymb}\n\t\t\t\t\\usepackage{amsbsy}\n\t\t\t\t\\usepackage{mathrsfs}\n\t\t\t\t\\usepackage{upgreek}\n\t\t\t\t\\setlength{\\oddsidemargin}{-69pt}\n\t\t\t\t\\begin{document}$$(q,\\varepsilon _F)$$\\end{document}-secure and \\documentclass[12pt]{minimal}\n\t\t\t\t\\usepackage{amsmath}\n\t\t\t\t\\usepackage{wasysym}\n\t\t\t\t\\usepackage{amsfonts}\n\t\t\t\t\\usepackage{amssymb}\n\t\t\t\t\\usepackage{amsbsy}\n\t\t\t\t\\usepackage{mathrsfs}\n\t\t\t\t\\usepackage{upgreek}\n\t\t\t\t\\setlength{\\oddsidemargin}{-69pt}\n\t\t\t\t\\begin{document}$$(q,\\varepsilon _G)$$\\end{document}-secure against non-adaptive chosen-plaintext (NCPA) attacks, yields a block cipher which is \\documentclass[12pt]{minimal}\n\t\t\t\t\\usepackage{amsmath}\n\t\t\t\t\\usepackage{wasysym}\n\t\t\t\t\\usepackage{amsfonts}\n\t\t\t\t\\usepackage{amssymb}\n\t\t\t\t\\usepackage{amsbsy}\n\t\t\t\t\\usepackage{mathrsfs}\n\t\t\t\t\\usepackage{upgreek}\n\t\t\t\t\\setlength{\\oddsidemargin}{-69pt}\n\t\t\t\t\\begin{document}$$(q,\\varepsilon _F+\\varepsilon _G)$$\\end{document}-secure against adaptive chosen-plaintext and ciphertext (CCA) attacks. The first contribution of this work is a surprisingly simple proof of this theorem, relying on Patarin\u2019s H-coefficient method. We then extend our new proof to obtain new results (still in the information-theoretic setting). In particular, we prove a new composition theorem (which can be seen as the generalization of the \u201ctwo weak make one strong\u201d theorem to the composition of \\documentclass[12pt]{minimal}\n\t\t\t\t\\usepackage{amsmath}\n\t\t\t\t\\usepackage{wasysym}\n\t\t\t\t\\usepackage{amsfonts}\n\t\t\t\t\\usepackage{amssymb}\n\t\t\t\t\\usepackage{amsbsy}\n\t\t\t\t\\usepackage{mathrsfs}\n\t\t\t\t\\usepackage{upgreek}\n\t\t\t\t\\setlength{\\oddsidemargin}{-69pt}\n\t\t\t\t\\begin{document}$$n>2$$\\end{document} block ciphers) which provides both amplification of the advantage and strengthening of the distinguisher\u2019s class in some optimal way (indeed we prove that our new composition theorem is tight up\u00a0to some constant).", 
    "editor": [
      {
        "familyName": "Joux", 
        "givenName": "Antoine", 
        "type": "Person"
      }, 
      {
        "familyName": "Youssef", 
        "givenName": "Amr", 
        "type": "Person"
      }
    ], 
    "genre": "chapter", 
    "id": "sg:pub.10.1007/978-3-319-13051-4_8", 
    "isAccessibleForFree": true, 
    "isPartOf": {
      "isbn": [
        "978-3-319-13050-7", 
        "978-3-319-13051-4"
      ], 
      "name": "Selected Areas in Cryptography -- SAC 2014", 
      "type": "Book"
    }, 
    "keywords": [
      "block cipher", 
      "security amplification", 
      "cipher", 
      "new block cipher", 
      "better security", 
      "class of adversaries", 
      "strong adversary", 
      "information-theoretic setting", 
      "chosen-plaintext attack", 
      "ciphertext attacks", 
      "composition theorem", 
      "security", 
      "adversary", 
      "Maurer", 
      "Pietrzak", 
      "attacks", 
      "first contribution", 
      "proof", 
      "new composition theorem", 
      "optimal way", 
      "class", 
      "results", 
      "work", 
      "simple proof", 
      "method", 
      "new results", 
      "advantages", 
      "way", 
      "amplification", 
      "components", 
      "important results", 
      "respect", 
      "theorem", 
      "terms", 
      "Renner", 
      "setting", 
      "contribution", 
      "new proof", 
      "strengthening", 
      "logarithmic terms", 
      "composition"
    ], 
    "name": "Security Amplification for the Composition of Block Ciphers: Simpler Proofs and New Results", 
    "pagination": "129-146", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1047676121"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/978-3-319-13051-4_8"
        ]
      }
    ], 
    "publisher": {
      "name": "Springer Nature", 
      "type": "Organisation"
    }, 
    "sameAs": [
      "https://doi.org/10.1007/978-3-319-13051-4_8", 
      "https://app.dimensions.ai/details/publication/pub.1047676121"
    ], 
    "sdDataset": "chapters", 
    "sdDatePublished": "2022-12-01T06:54", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20221201/entities/gbq_results/chapter/chapter_443.jsonl", 
    "type": "Chapter", 
    "url": "https://doi.org/10.1007/978-3-319-13051-4_8"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/978-3-319-13051-4_8'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/978-3-319-13051-4_8'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/978-3-319-13051-4_8'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/978-3-319-13051-4_8'


 

This table displays all metadata directly associated to this object as RDF triples.

122 TRIPLES      22 PREDICATES      65 URIs      58 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/978-3-319-13051-4_8 schema:about anzsrc-for:08
2 anzsrc-for:0804
3 schema:author Nc3182cae8de34710acab693a562f25c1
4 schema:datePublished 2014-11-29
5 schema:datePublishedReg 2014-11-29
6 schema:description Security amplification results for block ciphers typically state that cascading (i.e., composing with independent keys) two (or more) block ciphers yields a new block cipher that offers better security against some class of adversaries and/or that resists stronger adversaries than each of its components. One of the most important results in this respect is the so-called “two weak make one strong” theorem, first established up to logarithmic terms by Maurer and Pietrzak (TCC 2004), and later optimally tightened by Maurer, Pietrzak, and Renner (CRYPTO 2007), which states that, in the information-theoretic setting, cascading \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$F$$\end{document} and \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$G^{-1}$$\end{document}, where \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$F$$\end{document} and \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$G$$\end{document} are respectively \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(q,\varepsilon _F)$$\end{document}-secure and \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(q,\varepsilon _G)$$\end{document}-secure against non-adaptive chosen-plaintext (NCPA) attacks, yields a block cipher which is \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(q,\varepsilon _F+\varepsilon _G)$$\end{document}-secure against adaptive chosen-plaintext and ciphertext (CCA) attacks. The first contribution of this work is a surprisingly simple proof of this theorem, relying on Patarin’s H-coefficient method. We then extend our new proof to obtain new results (still in the information-theoretic setting). In particular, we prove a new composition theorem (which can be seen as the generalization of the “two weak make one strong” theorem to the composition of \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$n>2$$\end{document} block ciphers) which provides both amplification of the advantage and strengthening of the distinguisher’s class in some optimal way (indeed we prove that our new composition theorem is tight up to some constant).
7 schema:editor N99be1f46261c4302a6184aeab695bddb
8 schema:genre chapter
9 schema:isAccessibleForFree true
10 schema:isPartOf Ne962630e5d274b4d84b5976f047b797f
11 schema:keywords Maurer
12 Pietrzak
13 Renner
14 advantages
15 adversary
16 amplification
17 attacks
18 better security
19 block cipher
20 chosen-plaintext attack
21 cipher
22 ciphertext attacks
23 class
24 class of adversaries
25 components
26 composition
27 composition theorem
28 contribution
29 first contribution
30 important results
31 information-theoretic setting
32 logarithmic terms
33 method
34 new block cipher
35 new composition theorem
36 new proof
37 new results
38 optimal way
39 proof
40 respect
41 results
42 security
43 security amplification
44 setting
45 simple proof
46 strengthening
47 strong adversary
48 terms
49 theorem
50 way
51 work
52 schema:name Security Amplification for the Composition of Block Ciphers: Simpler Proofs and New Results
53 schema:pagination 129-146
54 schema:productId N434b570bd2274cef99c6f8913ab6b1c0
55 Nd55dabd30e84407fbc9a10c1ba33a8f9
56 schema:publisher N1cc14bd587784f4fae558f0bbdbb89f0
57 schema:sameAs https://app.dimensions.ai/details/publication/pub.1047676121
58 https://doi.org/10.1007/978-3-319-13051-4_8
59 schema:sdDatePublished 2022-12-01T06:54
60 schema:sdLicense https://scigraph.springernature.com/explorer/license/
61 schema:sdPublisher Nfec4094a12e049abbebc21ab6b1ba679
62 schema:url https://doi.org/10.1007/978-3-319-13051-4_8
63 sgo:license sg:explorer/license/
64 sgo:sdDataset chapters
65 rdf:type schema:Chapter
66 N1cc14bd587784f4fae558f0bbdbb89f0 schema:name Springer Nature
67 rdf:type schema:Organisation
68 N1d013fd50a964ff0b902c1dc205b7316 rdf:first sg:person.011724731171.01
69 rdf:rest rdf:nil
70 N434b570bd2274cef99c6f8913ab6b1c0 schema:name doi
71 schema:value 10.1007/978-3-319-13051-4_8
72 rdf:type schema:PropertyValue
73 N51c36b82f9ad42e3b03379ad0f354bf9 schema:familyName Youssef
74 schema:givenName Amr
75 rdf:type schema:Person
76 N7bc89b1a2e3c4890985d5431d629c528 rdf:first sg:person.012254315647.07
77 rdf:rest N1d013fd50a964ff0b902c1dc205b7316
78 N99be1f46261c4302a6184aeab695bddb rdf:first Nb164b190ac5c492caaacec89af8d390a
79 rdf:rest Nc83baf10ab164670a297b8ca90202034
80 Nb164b190ac5c492caaacec89af8d390a schema:familyName Joux
81 schema:givenName Antoine
82 rdf:type schema:Person
83 Nc3182cae8de34710acab693a562f25c1 rdf:first sg:person.010731237165.96
84 rdf:rest N7bc89b1a2e3c4890985d5431d629c528
85 Nc83baf10ab164670a297b8ca90202034 rdf:first N51c36b82f9ad42e3b03379ad0f354bf9
86 rdf:rest rdf:nil
87 Nd55dabd30e84407fbc9a10c1ba33a8f9 schema:name dimensions_id
88 schema:value pub.1047676121
89 rdf:type schema:PropertyValue
90 Ne962630e5d274b4d84b5976f047b797f schema:isbn 978-3-319-13050-7
91 978-3-319-13051-4
92 schema:name Selected Areas in Cryptography -- SAC 2014
93 rdf:type schema:Book
94 Nfec4094a12e049abbebc21ab6b1ba679 schema:name Springer Nature - SN SciGraph project
95 rdf:type schema:Organization
96 anzsrc-for:08 schema:inDefinedTermSet anzsrc-for:
97 schema:name Information and Computing Sciences
98 rdf:type schema:DefinedTerm
99 anzsrc-for:0804 schema:inDefinedTermSet anzsrc-for:
100 schema:name Data Format
101 rdf:type schema:DefinedTerm
102 sg:person.010731237165.96 schema:affiliation grid-institutes:grid.12832.3a
103 schema:familyName Cogliati
104 schema:givenName Benoit
105 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010731237165.96
106 rdf:type schema:Person
107 sg:person.011724731171.01 schema:affiliation grid-institutes:None
108 schema:familyName Seurin
109 schema:givenName Yannick
110 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011724731171.01
111 rdf:type schema:Person
112 sg:person.012254315647.07 schema:affiliation grid-institutes:grid.12832.3a
113 schema:familyName Patarin
114 schema:givenName Jacques
115 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012254315647.07
116 rdf:type schema:Person
117 grid-institutes:None schema:alternateName ANSSI, Paris, France
118 schema:name ANSSI, Paris, France
119 rdf:type schema:Organization
120 grid-institutes:grid.12832.3a schema:alternateName University of Versailles, Versailles, France
121 schema:name University of Versailles, Versailles, France
122 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...