Smooth Trajectory Planning for Robot Using Particle Swarm Optimization View Full Text


Ontology type: schema:Chapter     


Chapter Info

DATE

2014-11-28

AUTHORS

Riad Menasri , Hamouche Oulhadj , Boubaker Daachi , Amir Nakib , Patrick Siarry

ABSTRACT

In this work, we deal with a class of problems of trajectory planning taking into account the smoothness of the trajectory. We assume that we have a set of positions in which the robot must pass. These positions are not assigned in the time axis. In this work, we propose a formulation of this problem, where the total length of the trajectory and the total time to move from the initial to the final position are minimized simultaneously. In order to ensure effective results and avoid abrupt movement, we should ensure the smoothness of the trajectory not only at the position level but also at the velocity and the acceleration levels. Thus, the position function must be at least two times differentiable. In our case, we use a polynomial function. We formulate this problem as a constraint optimization problem. To resolve it, we adapt the usual particle swarm algorithm to our problem and we show its efficiency by simulation. More... »

PAGES

50-59

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/978-3-319-12970-9_6

DOI

http://dx.doi.org/10.1007/978-3-319-12970-9_6

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1018442775


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/08", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Information and Computing Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0801", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Artificial Intelligence and Image Processing", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "LISSI Laboratory, University Paris-Est Cr\u00e9teil, 122 rue Paul Armangot, 94400, Vitry Sur Seine, France", 
          "id": "http://www.grid.ac/institutes/grid.410511.0", 
          "name": [
            "LISSI Laboratory, University Paris-Est Cr\u00e9teil, 122 rue Paul Armangot, 94400, Vitry Sur Seine, France"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Menasri", 
        "givenName": "Riad", 
        "id": "sg:person.016360025507.61", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016360025507.61"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "LISSI Laboratory, University Paris-Est Cr\u00e9teil, 122 rue Paul Armangot, 94400, Vitry Sur Seine, France", 
          "id": "http://www.grid.ac/institutes/grid.410511.0", 
          "name": [
            "LISSI Laboratory, University Paris-Est Cr\u00e9teil, 122 rue Paul Armangot, 94400, Vitry Sur Seine, France"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Oulhadj", 
        "givenName": "Hamouche", 
        "id": "sg:person.011606335401.22", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011606335401.22"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "LISSI Laboratory, University Paris-Est Cr\u00e9teil, 122 rue Paul Armangot, 94400, Vitry Sur Seine, France", 
          "id": "http://www.grid.ac/institutes/grid.410511.0", 
          "name": [
            "LISSI Laboratory, University Paris-Est Cr\u00e9teil, 122 rue Paul Armangot, 94400, Vitry Sur Seine, France"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Daachi", 
        "givenName": "Boubaker", 
        "id": "sg:person.015624112136.83", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015624112136.83"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "LISSI Laboratory, University Paris-Est Cr\u00e9teil, 122 rue Paul Armangot, 94400, Vitry Sur Seine, France", 
          "id": "http://www.grid.ac/institutes/grid.410511.0", 
          "name": [
            "LISSI Laboratory, University Paris-Est Cr\u00e9teil, 122 rue Paul Armangot, 94400, Vitry Sur Seine, France"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Nakib", 
        "givenName": "Amir", 
        "id": "sg:person.014071705765.05", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014071705765.05"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "LISSI Laboratory, University Paris-Est Cr\u00e9teil, 122 rue Paul Armangot, 94400, Vitry Sur Seine, France", 
          "id": "http://www.grid.ac/institutes/grid.410511.0", 
          "name": [
            "LISSI Laboratory, University Paris-Est Cr\u00e9teil, 122 rue Paul Armangot, 94400, Vitry Sur Seine, France"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Siarry", 
        "givenName": "Patrick", 
        "id": "sg:person.014230776021.01", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014230776021.01"
        ], 
        "type": "Person"
      }
    ], 
    "datePublished": "2014-11-28", 
    "datePublishedReg": "2014-11-28", 
    "description": "In this work, we deal with a class of problems of trajectory planning taking into account the smoothness of the trajectory. We assume that we have a set of positions in which the robot must pass. These positions are not assigned in the time axis. In this work, we propose a formulation of this problem, where the total length of the trajectory and the total time to move from the initial to the final position are minimized simultaneously. In order to ensure effective results and avoid abrupt movement, we should ensure the smoothness of the trajectory not only at the position level but also at the velocity and the acceleration levels. Thus, the position function must be at least two times differentiable. In our case, we use a polynomial function. We formulate this problem as a constraint optimization problem. To resolve it, we adapt the usual particle swarm algorithm to our problem and we show its efficiency by simulation.", 
    "editor": [
      {
        "familyName": "Siarry", 
        "givenName": "Patrick", 
        "type": "Person"
      }, 
      {
        "familyName": "Idoumghar", 
        "givenName": "Lhassane", 
        "type": "Person"
      }, 
      {
        "familyName": "Lepagnot", 
        "givenName": "Julien", 
        "type": "Person"
      }
    ], 
    "genre": "chapter", 
    "id": "sg:pub.10.1007/978-3-319-12970-9_6", 
    "inLanguage": "en", 
    "isAccessibleForFree": false, 
    "isPartOf": {
      "isbn": [
        "978-3-319-12969-3", 
        "978-3-319-12970-9"
      ], 
      "name": "Swarm Intelligence Based Optimization", 
      "type": "Book"
    }, 
    "keywords": [
      "trajectory planning", 
      "constraint optimization problem", 
      "smooth trajectory planning", 
      "Using Particle Swarm Optimization", 
      "particle swarm optimization", 
      "particle swarm algorithm", 
      "class of problems", 
      "swarm algorithm", 
      "swarm optimization", 
      "optimization problem", 
      "time axis", 
      "set of positions", 
      "effective results", 
      "position level", 
      "robot", 
      "abrupt movement", 
      "algorithm", 
      "planning", 
      "polynomial function", 
      "smoothness", 
      "position function", 
      "final position", 
      "optimization", 
      "work", 
      "set", 
      "total time", 
      "simulations", 
      "trajectories", 
      "efficiency", 
      "time", 
      "position", 
      "order", 
      "class", 
      "acceleration levels", 
      "function", 
      "results", 
      "movement", 
      "formulation", 
      "account", 
      "cases", 
      "levels", 
      "initials", 
      "length", 
      "velocity", 
      "total length", 
      "axis", 
      "problem", 
      "usual particle swarm algorithm", 
      "Robot Using Particle Swarm Optimization"
    ], 
    "name": "Smooth Trajectory Planning for Robot Using Particle Swarm Optimization", 
    "pagination": "50-59", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1018442775"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/978-3-319-12970-9_6"
        ]
      }
    ], 
    "publisher": {
      "name": "Springer Nature", 
      "type": "Organisation"
    }, 
    "sameAs": [
      "https://doi.org/10.1007/978-3-319-12970-9_6", 
      "https://app.dimensions.ai/details/publication/pub.1018442775"
    ], 
    "sdDataset": "chapters", 
    "sdDatePublished": "2021-12-01T20:03", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20211201/entities/gbq_results/chapter/chapter_276.jsonl", 
    "type": "Chapter", 
    "url": "https://doi.org/10.1007/978-3-319-12970-9_6"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/978-3-319-12970-9_6'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/978-3-319-12970-9_6'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/978-3-319-12970-9_6'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/978-3-319-12970-9_6'


 

This table displays all metadata directly associated to this object as RDF triples.

147 TRIPLES      23 PREDICATES      74 URIs      67 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/978-3-319-12970-9_6 schema:about anzsrc-for:08
2 anzsrc-for:0801
3 schema:author N01c70f0c040940cdb2ea06bfad87a1b5
4 schema:datePublished 2014-11-28
5 schema:datePublishedReg 2014-11-28
6 schema:description In this work, we deal with a class of problems of trajectory planning taking into account the smoothness of the trajectory. We assume that we have a set of positions in which the robot must pass. These positions are not assigned in the time axis. In this work, we propose a formulation of this problem, where the total length of the trajectory and the total time to move from the initial to the final position are minimized simultaneously. In order to ensure effective results and avoid abrupt movement, we should ensure the smoothness of the trajectory not only at the position level but also at the velocity and the acceleration levels. Thus, the position function must be at least two times differentiable. In our case, we use a polynomial function. We formulate this problem as a constraint optimization problem. To resolve it, we adapt the usual particle swarm algorithm to our problem and we show its efficiency by simulation.
7 schema:editor N2a434f421d4645ce92b8bfbaeb9ac12a
8 schema:genre chapter
9 schema:inLanguage en
10 schema:isAccessibleForFree false
11 schema:isPartOf Ne24a2d57ca824f78ac68a22906654d53
12 schema:keywords Robot Using Particle Swarm Optimization
13 Using Particle Swarm Optimization
14 abrupt movement
15 acceleration levels
16 account
17 algorithm
18 axis
19 cases
20 class
21 class of problems
22 constraint optimization problem
23 effective results
24 efficiency
25 final position
26 formulation
27 function
28 initials
29 length
30 levels
31 movement
32 optimization
33 optimization problem
34 order
35 particle swarm algorithm
36 particle swarm optimization
37 planning
38 polynomial function
39 position
40 position function
41 position level
42 problem
43 results
44 robot
45 set
46 set of positions
47 simulations
48 smooth trajectory planning
49 smoothness
50 swarm algorithm
51 swarm optimization
52 time
53 time axis
54 total length
55 total time
56 trajectories
57 trajectory planning
58 usual particle swarm algorithm
59 velocity
60 work
61 schema:name Smooth Trajectory Planning for Robot Using Particle Swarm Optimization
62 schema:pagination 50-59
63 schema:productId N0736799cd087400a8822406c82324a0c
64 N4efeed6c61d44433a537edd8014566ff
65 schema:publisher N3b72a90262ea44f8aedfe1930fad4482
66 schema:sameAs https://app.dimensions.ai/details/publication/pub.1018442775
67 https://doi.org/10.1007/978-3-319-12970-9_6
68 schema:sdDatePublished 2021-12-01T20:03
69 schema:sdLicense https://scigraph.springernature.com/explorer/license/
70 schema:sdPublisher N2d5c26134ee143a89e8fa3652e2fdf59
71 schema:url https://doi.org/10.1007/978-3-319-12970-9_6
72 sgo:license sg:explorer/license/
73 sgo:sdDataset chapters
74 rdf:type schema:Chapter
75 N01c70f0c040940cdb2ea06bfad87a1b5 rdf:first sg:person.016360025507.61
76 rdf:rest Nc60b2e819de54265a372c8e470c2cfb4
77 N0736799cd087400a8822406c82324a0c schema:name dimensions_id
78 schema:value pub.1018442775
79 rdf:type schema:PropertyValue
80 N08be02600e104eb09ad9741f5a113f2d rdf:first N49fa42529546494fbde783e86caf0944
81 rdf:rest Nbad2ef11aca5433783f3874995523db4
82 N0b18909fd51648bf8f42a9a22af6be71 schema:familyName Siarry
83 schema:givenName Patrick
84 rdf:type schema:Person
85 N2a434f421d4645ce92b8bfbaeb9ac12a rdf:first N0b18909fd51648bf8f42a9a22af6be71
86 rdf:rest N08be02600e104eb09ad9741f5a113f2d
87 N2d5c26134ee143a89e8fa3652e2fdf59 schema:name Springer Nature - SN SciGraph project
88 rdf:type schema:Organization
89 N3b72a90262ea44f8aedfe1930fad4482 schema:name Springer Nature
90 rdf:type schema:Organisation
91 N49fa42529546494fbde783e86caf0944 schema:familyName Idoumghar
92 schema:givenName Lhassane
93 rdf:type schema:Person
94 N4efeed6c61d44433a537edd8014566ff schema:name doi
95 schema:value 10.1007/978-3-319-12970-9_6
96 rdf:type schema:PropertyValue
97 N740ccdbe62f741529a2da469d625d24f schema:familyName Lepagnot
98 schema:givenName Julien
99 rdf:type schema:Person
100 N82f42d46c2734847871fc6d174bbdc20 rdf:first sg:person.014230776021.01
101 rdf:rest rdf:nil
102 N968556dc2d1d42f5a93156c298517d68 rdf:first sg:person.015624112136.83
103 rdf:rest Nb201ce1bd42d4a98b0bb1fef4fb731f2
104 Nb201ce1bd42d4a98b0bb1fef4fb731f2 rdf:first sg:person.014071705765.05
105 rdf:rest N82f42d46c2734847871fc6d174bbdc20
106 Nbad2ef11aca5433783f3874995523db4 rdf:first N740ccdbe62f741529a2da469d625d24f
107 rdf:rest rdf:nil
108 Nc60b2e819de54265a372c8e470c2cfb4 rdf:first sg:person.011606335401.22
109 rdf:rest N968556dc2d1d42f5a93156c298517d68
110 Ne24a2d57ca824f78ac68a22906654d53 schema:isbn 978-3-319-12969-3
111 978-3-319-12970-9
112 schema:name Swarm Intelligence Based Optimization
113 rdf:type schema:Book
114 anzsrc-for:08 schema:inDefinedTermSet anzsrc-for:
115 schema:name Information and Computing Sciences
116 rdf:type schema:DefinedTerm
117 anzsrc-for:0801 schema:inDefinedTermSet anzsrc-for:
118 schema:name Artificial Intelligence and Image Processing
119 rdf:type schema:DefinedTerm
120 sg:person.011606335401.22 schema:affiliation grid-institutes:grid.410511.0
121 schema:familyName Oulhadj
122 schema:givenName Hamouche
123 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011606335401.22
124 rdf:type schema:Person
125 sg:person.014071705765.05 schema:affiliation grid-institutes:grid.410511.0
126 schema:familyName Nakib
127 schema:givenName Amir
128 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014071705765.05
129 rdf:type schema:Person
130 sg:person.014230776021.01 schema:affiliation grid-institutes:grid.410511.0
131 schema:familyName Siarry
132 schema:givenName Patrick
133 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014230776021.01
134 rdf:type schema:Person
135 sg:person.015624112136.83 schema:affiliation grid-institutes:grid.410511.0
136 schema:familyName Daachi
137 schema:givenName Boubaker
138 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015624112136.83
139 rdf:type schema:Person
140 sg:person.016360025507.61 schema:affiliation grid-institutes:grid.410511.0
141 schema:familyName Menasri
142 schema:givenName Riad
143 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016360025507.61
144 rdf:type schema:Person
145 grid-institutes:grid.410511.0 schema:alternateName LISSI Laboratory, University Paris-Est Créteil, 122 rue Paul Armangot, 94400, Vitry Sur Seine, France
146 schema:name LISSI Laboratory, University Paris-Est Créteil, 122 rue Paul Armangot, 94400, Vitry Sur Seine, France
147 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...